首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
地质学   21篇
自然地理   1篇
  2012年   1篇
  2009年   2篇
  2007年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
排序方式: 共有22条查询结果,搜索用时 46 毫秒
1.
During the Late Weichselian, large marginal moraines were deposited in the Norwegian fjords. In Troms County these features are termed the Skarpnes and Tromsø-Lyngen moraines, respectively, and have been mapped from land into the marine environment where they were formed as ice-contact submarine fans. High-resolution seismic data from several fjords have been studied and reveal a typical sediment thickness of 150–320 m for these ice-contact systems. All of the ice-contact submarine fans were formed under similar climatic conditions, but display wide variation in geometry, architecture and seismic pattern. This variation is related to differences in sediment supply, the nature of the subsurface of the fan (e.g. position of thresholds), basin geometry and basin depth. Based on interpretation of the different seismic facies and the architecture of the fans, former ice-front positions have been suggested and a model has been presented for the formation of different types of ice-contact submarine fans dependent upon variation in local basin condition.  相似文献   
2.
Four different types of pyritized tubes and three types of pyritized burrow fillings are described from Pleistocene glaciomarine sediments in Andfjorden, northern Norway. The tubes and burrows probably originated from tubicolous and burrowing polychaetes respectively. The decomposition of the organic matter in the tubes and burrows created a reducing micro-environment favouring precipitation of pyrite. By comparison with Holocene tubes from marine sediments in Andfjorden and FugloSyfjorden, it is seen that pyritization commenced with isolated spherules. These spherules with incipient pyrite crystals and framboids were formed mainly on the inner wall of the tube. Presence of a monosulphide in the Holocene Fugløyfjorden material suggests that the pyritization process has reached a later phase; the final result would be a completely pyritized trace fossil. It is shown that single pyrite crystals (octahedra) generally attain greater size in the burrow fillings than in the tubes. The microstructure found in some of the pyritized tubes is interpreted as a reflection of the microstructure in the original wall. Finally, the implications for the depositional environment in Pleistocene in Andfjorden is investigated with reference to the benthic skeletal macrofaunal assemblage in the sequence. The pyritized trace fossils occur frequently in an opportunistic assemblage from a period (c. 14,000–13,000 yr BP) characterized by some oxygen deficiency. Later (13,000–10,000 yr BP) they play a minor role in an established assemblage under improved oxygen conditions.  相似文献   
3.
BOREAS Vorren, K.-D. 1978 03 01: Late and Middle Weichselian stratigraphy of Andøya, north Norway, Boreas, Vol. 7, pp. 19–38. Oslo. ISSN 0300–9483.
Bio-stratigraphy and 14C datings from Lake Endletvatn, 69o 44'N and 19o05'E, approx. 35 m above sea level, suggest that the lacustrine sedimentation started about 18,000 B.P. The Middle Weichselian vegetation was probably a dry arctic, partly barren, grassland type with abundant Draba spp. and perhaps also Braya spp. Two climatic ameliorations of this chronal substage, named Endletvatn thermomers 1 and 2 (ET 1 and 2), have been recorded. During ET 2, the beginning of which has been dated at about 15,000 B.P., a humid climate prevailed, with a July temperature probably not deviating much from the present one. The colonization by low alpine and subalpine species probably started in the Bølling Chronozone. During the early Allerød Chronozone, protocratic conditions with grasses RumexlOxyria, Papaver and Sagina of. saginoides prevailed. During the middle of the Allerød, stable soil and continuous vegetation was established at sheltered places. At the transition to the Younger Dryas Chronozone a climate favouring Artemisia changed this vegetational development. The middle of the Younger Dryas was cool and humid, probably with an upper low alpine vegetation. The end of this chronozone was characterized by a vegetation of low alpine heaths with Empetrum and Dryas.
Diatom analysis (Foged 1978) suggests that there has been no direct marine influence in the basin. The marginal moraine stratigraphy, the marine limit and the climatic development are discussed.  相似文献   
4.
A 6.5 m long sediment succession (18.5-2.2 ka BP) from the northern sub-basin of lake Endletvatn was analysed lithologically, palynologically and chemically. The chemical analyses were performed at about 10 cm depth intervals for the following parameters: total organic C, N, P, Fe, Mn, Mg, Na, K, Ca and S, in addition to water content, dry density, and pH. Two main lithostratigraphical units can be distinguished, which also differ substantially in chemical characters. Five chemostratigraphical main units were distinguished. The two lowermost units 1-2 (18.5-12.9 ka BP) correspond to the lower lithostratigraphical main unit and are characterized by minerogenous sediments with low C and N, and high Fe, Mg and K. P is low, partly because of a scarcity of P in parent rocks. Chemostratigraphical unit 3 (12.9-9.6 ka BP) is characterized by increasing C and N and a high N/P ratio (10-20) culminating in the early part of the Younger Dryas, indicating abundant N available for bio-production. The Fe, Mg, and K content is still high, but decreasing, indicating decreasing glacial and kryogenic erosion and allogenic deposition until c. 10.5 ka BP. A hiatus represented by a sand layer covers most of the time-span 10.5-9.6 ka BP. Chemostratigraphical unit 4 (9.6-5.3 ka BP) represents the Holocene thermal optimum in three subunits. In the time interval 9.6-9.1 ka BP, Fe, Mg and K decrease to a minimum and P shows a pronounced increase. The megathermal period c. 8200-5300 BP, is characterized by maxima of C, N and P and a minimum of Fe. The katathermal period after 5.3 ka BP is characterized primarily by increased Fe precipitation, increasing Fe/Mn ratio, and P, C and N at a constantly lower level than during the megathermal. A stable C/N ratio of about 10, of the sediment interval younger than 12.9 ka BP characterizes the sediments as transitional between gyttja and dy. The Holocene lake type varied between weakly oligohumic and mesohumic. Stagnant bottom waters (reducing conditions) occur in the periods 12.9-11.5 ka BP and c. 7.5-5.3 ka BP. The climatic development and other environmental implications of the joint chrono-, chemo-, litho- and biostratigraphical data set are discussed.  相似文献   
5.
From the Sellevollmyra bog at Andøya, northern Norway, a 440‐cm long peat core covering the last c. 7000 calendar years was examined for humification, loss‐on‐ignition, microfossils, macrofossils and tephra. The age model was based on a Bayesian wiggle‐match of 35 14C dates and two historically anchored tephra layers. Based on changes in lithology and biostratigraphical climate proxies, several climatic changes were identified (periods of the most fundamental changes in italics): 6410–6380, 6230–6050, 5730–5640, 5470–5430, 5340–5310, 5270–5100, 4790–4710, 4890–4820, 4380–4320, 4220–4120, 4000–3810, 3610–3580, 3370–3340 (regionally 2850–2750; in Sellevollmyra a hiatus between 2960–2520), 2330–2220, 1950, 1530–1450, 1150–840, 730? and c. 600? cal. yr BP. Most of these climate changes are known from other investigations of different palaeoclimate proxies in northern and middle Europe. Some volcanic eruptions seemingly coincide with vegetation changes recorded in the peat, e.g. about 5760 cal. yr BP; however, the known climatic deterioration at the time of the Hekla‐4 tephra layer started some decades before the eruption event.  相似文献   
6.
The sea-floor morphology of two pronounced across-fjord bedrock thresholds located at the mouths of Ofotfjorden and Tysfjorden, northern Norway, has been analysed based on swath bathymetry and seismic data. The Younger Dryas ice front was located here during the recession of one of the large palaeo-ice streams of the Fennoscandian Ice Sheet. The thresholds are several kilometres long and wide, rising to several hundred metres above the adjacent sea floor, and the slopes are steep, up to 25°. The Ofotfjorden threshold is draped by acoustically discontinuous to chaotic sediments partly infilling the bedrock relief. A pattern of well-developed, subglacial bedforms (e.g. crag-and-tail formations, drumlins and glacial lineations) on top of both thresholds suggests fast-flowing ice. A series of smaller transverse ridges is identified on both thresholds and probably records ice-front oscillations during the final deglaciation. The distal parts of the sediments have been remobilized by slides that occurred after glacial retreat from the thresholds. Earthquake activity due to the isostatic rebound following ice retreat from this area was the most likely triggering mechanism for the slides. The location of the ice front on a prominent bedrock threshold indicates that the basin configuration was important in locating the maximum position of the climatically induced re-advance, i.e. a topographic control on the maximum Younger Dryas position in the Ofotfjorden and Tysfjorden area is suggested.  相似文献   
7.
Based on studies of gravity cores from two transverse troughs on the shelf and earlier investigations, the surface sediments are divided into three main facies: bouldery and pebbly sand on the banks and the shelf break; sand on the flanks and outer parts of the troughs and sandy mud in the inner parts of the troughs. Besides a depth control, the distribution must have been influenced by relatively rapidly moving bottom currents in the outer parts of the troughs. The distribution and composition of the modern benthic foraminiferal fauna (e.g. C. lobatulus/T. angulosa in the outer reaches and C. obtusalBolivina spp. in the inner reaches) is mainly controlled by the bottom current regime and sediments. The planktic fauna dominated by N. pachyderma (R) correlates well with the winter surface temperatures. The stratigraphi-cal analysis shows that the 10,000–9,600 years B.P. period experienced high rates of deposition probably due to meltwater runoff from the continental ice sheet. At ca. 9,700 B.P. a minimum in the production of N. pachyderma (R) indicates a temporary cooling of the surface water. During the 9,600–7,800 B.P. period the rate of deposition was reduced. At the end of this period the foraminiferal fauna changed towards one like the modern fauna, reflecting improving ecological conditions. At ca. 7,800 B.P. the sediments became coarser due to reduced input of detrital sediments and an increased production of sand-sized biogenic material. Since then the shelf environment has been fairly stable up to the present time.  相似文献   
8.
The present knowledge of the Late Weichselian marginal moraines and paleoenvironment from the coastal and shelf areas of Troms and west Finnmark is reviewed. Diverse opinions exist regarding the position and age of the marginal moraines in the offshore areas.  相似文献   
9.
Late Quaternary glaciation in the south-western Barents Sea   总被引:1,自引:0,他引:1  
Moraine ridges have been morphologically and seismically identified in the south-western Barents Sea. Some of these ridges were deposited in front of ice lobes from the northern part of the Fennoscandian Ice Sheet, others in front of glaciers located on the southern Barents Sea shelf. The moraine ridges were probably deposited during the Weichselian, possibly the Late Weichselian.  相似文献   
10.
Sediments from two limnic basins in a sub-continental region of northern Norway are investigated for pollen, plant macrofossils and bivalves at a high stratigraphical resolution. The basins are located at 280 and 400 m a.s.l. on the S-SW slope of Mt. Skrubben (848 m a.s.l.). The bio- and lithostratigraphical records are interpreted in terms of immigration and establishment of forest tree species and climate. The mountain was deglaciated at both sites at c . 9200-9100 BP ( c . 10200-10100 cal. BP). Betula pubescens forest stands established at c . 8900 BP ( c . 9900 cal. BP). The first Pinus sylvestris individuals may have established at or near the lowermost investigation site at c . 8700-8600 BP ( c . 9700-9600 cal. BP), while P. sylvestris forest stands were present at 400 m a.s.l. c . 7700 BP ( c . 8500 cal. BP) and expanded in area and/or density from c . 7200 BP. Macrofossils of P. sylvestris occur in strata with a pine pollen influx as low as c . 200 grains cm -2 yr -1 . The immigration of P. sylvestris to the western part of northern Fennoscandia may thus have happened earlier than formerly interpreted from pollen analyses alone, where influx values as low as c . 200 grains cm -2 yr -1 would not be considered as indicative of local presence. Alnus incana established at approximately the same time as P. sylvestris . During the period from deglaciation to c . 6600 BP ( c . 7300 cal. BP), calcareous limnic sediments were deposited in the basins, with Chara species and a Sphaeriidae fauna consisting of Pisidium hibernicum , P. lilljeborgii , P. milium , P. nitidum , P. waldeni and P. casertanum . During the period c . 8800-8500 BP, P. nitidum prevailed, and almost pure CaCO 3 sediments were formed. We interpret the environment as dry with a low influx of both minerogenic particles and humic substances. The period 8800-8500 BP (9800-9500 cal. yr BP) is interpreted as a period with warm and dry summers and cold and dry winters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号