首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   1篇
天文学   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The Middle Devonian Narva succession in the Baltic Basin represents a significant turnaround in the history of the basin. The detailed study of core and outcrop sections and the three‐dimensional correlations across the Baltic Basin reveal a carbonate‐dominated, mixed retrogressive succession, overlain by a siliciclastic‐dominated, progradational succession. The palaeogeographic reconstructions show how the shallow, tide‐influenced basin expanded from south‐west to north‐east and, later during the transgression, also to the north, south and east. The transgressive portion of the basin fill is dominated by carbonate‐rich sabkha and supratidal to intertidal deposits on the basin margins, and subtidal carbonates in the basin centre. Siliciclastic material was derived by tidal currents and storm waves from the south‐west through a tidal inlet and flood‐tidal delta complex. This initial transgressive phase is characterized by the lack of subsidence or even episodic uplifts in the northern/north‐western part of the basin margin, shown by convergence of timelines and the thin (30 m) transgressive succession. In contrast, on the southern margin, the facies associations stack vertically into a 70 to 80 m thick succession, indicating significantly higher subsidence rates. The upper part of the transgressive phase indicates subsidence across the whole basin. The upper, progradational portion of the basin fill is dominated by coarse, siliciclastic, tide‐influenced deltaic deposits that rapidly prograded from north‐west to south‐east. This detailed study on the Narva succession shows that siliciclastic and carbonate deposition was coeval and that mixing occurred at different temporal and spatial scales. The mixing was controlled by grain‐size, volume and location of siliciclastic input rather than relative sea‐level changes as suggested in widely used reciprocal mixing models. It is suggested that the forebulge of the Scandinavian Caledonian fold‐and‐thrust belt migrated to the north‐western margin of the Baltic Basin during the earliest Eifelian, as indicated by the lack of subsidence and probable uplift in the northern/north‐western margin during the early transgressive phase. The forebulge migration ceased although the forebulge had already started to subside during the later stages of the transgressive phase. The deltaic progradation is interpreted to be associated with the orogenic collapse and uplift in the Scandinavian Caledonides that caused the erosion of the foreland basin fill and the coarse sediment transport into the Baltic Basin.  相似文献   
2.
Abstract— Alteration of surficial suevites at Ries crater, Germany was studied by means of X‐ray diffraction and scanning electron microscopy. Here, we discuss the origin of hydrous silicate (clay) phases in these suevites that have been previously interpreted as resulting from post‐impact hydrothermal processes. The results of this study indicate that the dominant alteration phases are dioctahedral Al‐Fe montmorillonite and halloysite, which are typical low temperature clay minerals. We suggest that the surficial suevites are not altered by hydrothermal processes and that alteration occurred by low temperature subsurface weathering processes. If the surficial suevites were indeed hydrothermally modified during the early stages of post‐impact cooling, then the alteration was of limited character and is completely masked by later weathering.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号