首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   8篇
  国内免费   25篇
测绘学   2篇
大气科学   41篇
地球物理   7篇
地质学   6篇
海洋学   1篇
天文学   5篇
  2023年   1篇
  2022年   4篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   4篇
  2009年   5篇
  2008年   2篇
  2006年   2篇
  2005年   8篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
  1997年   2篇
  1985年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有62条查询结果,搜索用时 406 毫秒
1.
孟加拉湾季风爆发对南海季风爆发的影响Ⅰ:个例分析   总被引:11,自引:4,他引:11       下载免费PDF全文
利用南海季风试验分析场和NCAR向外长波辐射通量(OLR)资料研究了1998年孟加拉湾季风和南海季风爆发期间副热带环流的大尺度和天气尺度特征,探讨了孟加拉湾季风爆发与南海季风爆发之间的物理联系及孟加拉湾季风气旋的对流凝结潜热释放对副热带高压“撤出”南海的影响。结果表明,1998年5月爆发的东亚季风展现出典型的从孟加拉湾地区东传发展到南海地区的过程。随着孟加拉湾季风爆发和对流活动增强、北移,南海北部出现了低层西风和对流活动,领先于副热带高压在南海地区减弱和撤退。结果还显示南海北部地区的对流凝结加热有助于该地区经向温度梯度的反转,在热成风关系的制约下南海上空副热带高压脊面的垂直倾斜由冬季型转向夏季型,季风爆发。  相似文献   
2.
An observational analysis of satellite blackbody temperature (TBB) data and radar images suggests that the mesoscale vortex generation and merging process appeared to be essential for a tropical-depression-related heavy rain event in Shanghai, China. A numerical simulation reproduced the observed mesoscale vortex generation and merging process and the corresponding rain pattern, and then the model outputs were used to study the related dynamics through diagnosing the potential vorticity (PV) equation. The t...  相似文献   
3.
During the pre-summer rainy season, heavy rainfall occurs frequently in South China. Based on polarimetric radar observations, the microphysical characteristics and processes of convective features associated with extreme rainfall rates(ERCFs) are examined. In the regions with high ERCF occurrence frequency, sub-regional differences are found in the lightning flash rate(LFR) distributions. In the region with higher LFRs, the ERCFs have larger volumes of high reflectivity factor above the freezin...  相似文献   
4.
The cartography of erosion risk is mainly based on the development of models, which evaluate in a qualitative and quantitative manner the physical reproduction of the erosion processes (CORINE, EHU, INRA). These models are mainly semi‐quantitative but can be physically based and spatially distributed (the Pan‐European Soil Erosion Risk Assessment, PESERA). They are characterized by their simplicity and their applicability potential at large temporal and spatial scales. In developing our model SCALES (Spatialisation d'éChelle fine de l'ALéa Erosion des Sols/large‐scale assessment and mapping model of soil erosion hazard), we had in mind several objectives: (1) to map soil erosion at a regional scale with the guarantee of a large accuracy on the local level, (2) to envisage an applicability of the model in European oceanic areas, (3) to focus the erosion hazard estimation on the level of source areas (on‐site erosion), which are the agricultural parcels, (4) to take into account the weight of the temporality of agricultural practices (land‐use concept). Because of these objectives, the nature of variables, which characterize the erosion factors and because of its structure, SCALES differs from other models. Tested in Basse‐Normandie (Calvados 5500 km2) SCALES reveals a strong predisposition of the study area to the soil erosion which should require to be expressed in a wet year. Apart from an internal validation, we tried an intermediate one by comparing our results with those from INRA and PESERA. It appeared that these models under estimate medium erosion levels and differ in the spatial localization of areas with the highest erosion risks. SCALES underlines here the limitations in the use of pedo‐transfer functions and the interpolation of input data with a low resolution. One must not forget however that these models are mainly focused on an interregional comparative approach. Therefore the comparison of SCALES data with those of the INRA and PESERA models cannot result on a convincing validation of our model. For the moment the validation is based on the opinion of local experts, who agree with the qualitative indications delivered by our cartography. An external validation of SCALES is foreseen, which will be based on a thorough inventory of erosion signals in areas with different hazard levels. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
5.
A western North Pacific tropical cyclone (TC) intensity prediction scheme (WIPS) is developed based on TC samples from 1996 to 2002 using the stepwise regression technique, with the western North Pacific divided into three sub-regions: the region near the coast of East China (ECR), the South China Sea region (SCR), and the far oceanic region (FOR). Only the TCs with maximum sustained surface wind speed greater than 17.2 m s−1 are used in the scheme. Potential predictors include the climatology and persistence factors, synoptic environmental conditions, potential intensity of a TC and proximity of a TC to land. Variances explained by the selected predictors suggest that the potential intensity of a TC and the proximity of a TC to land are significant in almost all the forecast equations. Other important predictors include vertical wind shear in ECR, 500-hPa geopotential height anomaly at the TC center, zonal component of TC translation speed in SCR, intensity change of TC 12 or 24 h prior to initial time, and the longitude of TC center in FOR.  相似文献   
6.
Quantifying the spatial variability of species-specific tree transpiration across hillslopes is important for estimating watershed-scale evapotranspiration (ET) and predicting spatial drought effects on vegetation. The objectives of this study are to (1) assess sap flux density (Js) and tree-level transpiration (Ts) across three contrasting zones a (riparian buffer, mid-hillslope and upland-hillslope, (2) determine how species-specific Js responds to vapour pressure deficit (VPD) and (3) estimate watershed-level transpiration (Tw) using Ts derived from each zone. During 2015 and 2016, we measured Js in eight tree species in the three topographic zones in a small 12-ha forested watershed in the Piedmont region of central North Carolina. In the dry year of 2015, loblolly pine (Pinus taeda), Virginia pine (Pinus virginiana) and sweetgum (Liquidambar styraciflua) Js rates were significantly higher in the riparian buffer when compared to the other two zones. In contrast, Js rates in tulip poplar (Liriodendron tulipifera) and red maple (Acer rubrum) were significantly lower in the buffer than in the mid-hillslope. Daily Ts varied by zone and ranged from 10 to 93 L/day in the dry year and from 9 to 122 L/day in the wet year (2016). Js responded nonlinearly to VPD in all species and zones. Annual Tw was 447, 377 and 340 mm based on scaled-Js data for the buffer, mid-hillslope and upland-hillslope, respectively. We conclude that large spatial variability in Js and scaled Tw was driven by differences in soil moisture at each zone and forest composition. Consequently, spatial heterogeneity of vegetation and soil moisture must be considered when accurately quantifying watershed level ET.  相似文献   
7.

Disaster preparedness plans reduce future damages, but may lack testing to assess their effectiveness in operation. This study used the state-designed Local Government Unit Disaster Preparedness Journal: Checklist of Minimum Actions for Mayors in assessing the readiness to natural hazards of 92 profiled municipalities in central Philippines inhabited by 2.4 million people. Anchored on the Hyogo Framework for Action 2005–2015, it assessed their preparedness in 4 criteria—systems and structures, policies and plans, building competencies, and equipment and supplies. Data were analyzed using statistical package for social sciences, frequency count, percentage, and weighted mean. The local governments were found highly vulnerable to tropical cyclone and flood while vulnerable to earthquake, drought, and landslide. They were partially prepared regardless of profile, but the coastal, middle-earning, most populated, having the least number of villages, and middle-sized had higher levels of preparedness. Those highly vulnerable to earthquake and forest fire were prepared, yet only partially prepared to flood, storm surge, drought, tropical cyclone, tornado, tsunami and landslide. The diverse attitude of stakeholders, insufficient manpower, and poor database management were the major problems encountered in executing countermeasures. Appointing full-time disaster managers, developing a disaster information management system, massive information drive, organizing village-based volunteers, integrating disaster management into formal education, and mandatory trainings for officials, preparing for a possible major volcanic eruption and crafting a comprehensive plan against emerging emergencies like the COVID-19 pandemic may lead to a 360° preparedness.

  相似文献   
8.
A non-parametric method is used in this study to analyze and predict short-term rainfall due to tropical cyclones(TCs) in a coastal meteorological station. All 427 TCs during 1953-2011 which made landfall along the Southeast China coast with a distance less than 700 km to a certain meteorological station- Shenzhen are analyzed and grouped according to their landfalling direction, distance and intensity. The corresponding daily rainfall records at Shenzhen Meteorological Station(SMS) during TCs landfalling period(a couple of days before and after TC landfall) are collected. The maximum daily rainfall(R-24) and maximum 3-day accumulative rainfall(R-72) records at SMS for each TC category are analyzed by a non-parametric statistical method, percentile estimation. The results are plotted by statistical boxplots, expressing in probability of precipitation. The performance of the statistical boxplots is evaluated to forecast the short-term rainfall at SMS during the TC seasons in 2012 and 2013. Results show that the boxplot scheme can be used as a valuable reference to predict the short-term rainfall at SMS due to TCs landfalling along the Southeast China coast.  相似文献   
9.
A well tested agricultural systems model was used together with 114 years of historical climate data to study the performance of a dryland wheat–fallow system as impacted by climate variations and nitrogen input levels in southeast Australia, and to investigate the value of: (1) historical climate knowledge, (2) a perfect climate forecast, and (3) various forecasts of targeted variables. The potential value of historical climate records increases exponentially with the number of years of data. In order to confidently quantify the long term optimal nitrogen application rate at the study site at least 30 years of climate data are required. For nitrogen management only, the potential value of a perfect climate forecast is about $54/ha/year with a reduction of excess nitrogen application of 20 kg N/ha/year. The value of an ENSO based forecast system is $2/ha/year. Perfect forecasting of three or six categories of growing season rainfall would have a value of $10–12/ha/year. Perfect forecasts of three or six categories of simulated crop yield would bring about $33–34/ha/year. Choosing integrated variables as a forecasting target, for example crop yield derived from agricultural modelling, has the potential to significantly increase the value of forecasts.  相似文献   
10.
Based on the method of rotated principal component (RPC) analysis and wavelet transforms, the win-ter precipitation from 36 stations over China for the period 1881-1993 is examined. The results show thatthe three leading space-time modes correspond, in sequence, to winter rainfall anomalies over the reaches ofthe Yangtze River, the bend of the Yellow River, and the northeastern region of China. The three modes ex-hibit interannual oscillations with quasi-biennial and 8-year periods as well as interdecadal oscillationswith 16- and 32-year periods. The interannual oscillation (< 10 years) occurs in phase over the differentareas, and its maximum amplitude migrates northward considerably with prominent interdecadal variations.However, the interdecadal oscillations (10-32 years) are out of phase over the different regions, and theamplitude variations have the characteristics of stationary waves.The rainfall anomalies appear to be closely re lated to the anti-phase changes of mean sea-level pres-sure (SLP) over the Asian mainland and the North Pacific. When the SLP rises over the North Pacific anddecreases over the Asian mainland, the precipitation over East China increases noticeably. The linkage be-tween the rainfall over China and the SLP anomalies apparently results from the strength of the East Asianwinter monsoon and its associated temperature and moisture advection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号