首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
地球物理   2篇
地质学   1篇
海洋学   2篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2014年   1篇
  2009年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Habitat mapping data are increasingly being recognised for their importance in underpinning marine spatial planning. The ability to collect ultra-high resolution (cm) multibeam echosounder (MBES) data in shallow waters has facilitated understanding of the fine-scale distribution of benthic habitats in these areas that are often prone to human disturbance. Developing quantitative and objective approaches to integrate MBES data with ground observations for predictive modelling is essential for ensuring repeatability and providing confidence measures for habitat mapping products. Whilst supervised classification approaches are becoming more common, users are often faced with a decision whether to implement a pixel based (PB) or an object based (OB) image analysis approach, with often limited understanding of the potential influence of that decision on final map products and relative importance of data inputs to patterns observed. In this study, we apply an ensemble learning approach capable of integrating PB and OB Image Analysis from ultra-high resolution MBES bathymetry and backscatter data for mapping benthic habitats in Refuge Cove, a temperate coastal embayment in south-east Australia. We demonstrate the relative importance of PB and OB seafloor derivatives for the five broad benthic habitats that dominate the site. We found that OB and PB approaches performed well with differences in classification accuracy but not discernible statistically. However, a model incorporating elements of both approaches proved to be significantly more accurate than OB or PB methods alone and demonstrate the benefits of using MBES bathymetry and backscatter combined for class discrimination.  相似文献   
2.
Historical aerial photographs are an invaluable tool in shoreline mapping and change detection in coastal landscapes. We evaluate the extent to which structure-from-motion (SfM) photogrammetric methods can be applied to quantify volumetric changes along sandy beaches, using archival imagery. We demonstrate the application of SfM-derived digital surface models (DSMs) at East Beach and Lady Bay in southwest Victoria, Australia, using photographic datasets taken in 1969, 1977 and 1986, and compare them to LiDAR-derived DSMs acquired at both sites in 2007. The SfM approaches resulted in two entire and two partial suitable DSMs out of six datasets. Good-quality DSMs were spatially continuous with a good spread of ground control points (GCPs) near the beach at Lady Bay, whereas unsuitable DSMs were mostly restricted by poor distribution and number of GCPs in spatially segmented areas of East Beach, due to limited overlapping of images, possible poor quality of GCPs and also the propagation of errors in the derived point clouds. A volume of approximately 223 000 ± 72 000 m3 was deposited at Lady Bay between 1969 and 2007, despite minimal erosion observed near the breakwater. The partially suitable dataset of East Beach indicated that beach erosion of at least 39 m3 m−1 occurred immediately to the east of the seawall after 1977. We also discuss the drawbacks and strengths of SfM approaches as a benchmark of historical erosion assessments along sandy beaches. © 2020 John Wiley & Sons, Ltd.  相似文献   
3.
Coasts composed of resistant lithologies such as granite are generally highly resistant to erosion. They tend to evolve over multiple sea level cycles with highstands acting to remove subaerially weathered material. This often results in a landscape dominated by plunging cliffs with shore platforms rarely occurring. The long‐term evolution of these landforms means that throughout the Quaternary these coasts have been variably exposed to different sea level elevations which means erosion may have been concentrated at different elevations from today. Investigations of the submarine landscape of granitic coasts have however been hindered by an inability to accurately image the nearshore morphology. Only with the advent of multibeam sonar and aerial laser surveying can topographic data now be seamlessly collected from above and below sea level. This study tests the utility of these techniques and finds that very accurate measurements can be made of the nearshore thereby allowing researchers to study the submarine profile with the same accuracy as the subaerial profile. From a combination of terrestrial and marine LiDAR data with multibeam sonar data, it is found that the morphology of granite domes is virtually unaffected by erosion at sea level. It appears that evolution of these landscapes on the coast is a very slow process with modern sea level acting only to remove subaerially weathered debris. The size and orientation of the joints determines the erosional potential of the granite. Where joints are densely spaced (<2 m apart) or the bedrock is highly weathered can semi‐horizontal surfaces form. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
4.
Natural Hazards - Warnings issued by meteorological or oceanographic agencies are a common means of allowing people to prepare for likely impactful events. Quantifying the relationships between...  相似文献   
5.
Information regarding the composition and extent of benthic habitats on the South East Australian continental shelf is limited. In this habitat mapping study, multibeam echosounder (MBES) data are integrated with precisely geo-referenced video ground-truth data to quantify benthic biotic communities at Cape Nelson, Victoria, Australia. Using an automated decision tree classification approach, 5 representative biotic groups defined from video analysis were related to hydro-acoustically derived variables in the Cape Nelson survey area. Using a combination of multibeam bathymetry, backscatter and derivative products produced highest overall accuracy (87%) and kappa statistic (0.83). This study demonstrates that decision tree classifiers are capable of integrating variable data types for mapping distributions of benthic biological assemblages, which are important in maintaining biodiversity and other system services in the marine environment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号