首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   7篇
  国内免费   2篇
测绘学   1篇
大气科学   5篇
地球物理   16篇
地质学   24篇
海洋学   30篇
天文学   69篇
自然地理   1篇
  2024年   2篇
  2023年   2篇
  2022年   1篇
  2020年   3篇
  2019年   5篇
  2018年   7篇
  2017年   2篇
  2016年   6篇
  2015年   1篇
  2014年   9篇
  2013年   4篇
  2012年   5篇
  2011年   6篇
  2010年   8篇
  2009年   6篇
  2008年   10篇
  2007年   3篇
  2006年   3篇
  2005年   4篇
  2004年   7篇
  2003年   6篇
  2002年   9篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1980年   5篇
  1979年   1篇
  1977年   1篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有146条查询结果,搜索用时 31 毫秒
1.
In previous papers, the present authors have shown that the galactic anisotropy is modulated due to cosmic ray orbital deflection in the heliomagnetosphere, and that the sidereal time daily variations of galactic origin can be expressed using the basic vectors, which have been obtained by calculating trajectories of cosmic rays in a model magnetosphere having Parker's Archimedian spiral structure with a flat or a wavy neutral sheet. In the present paper, the magnetic irregularities superposed on the Parker's spiral field have been taken into account, which cause the scattering of cosmic rays and disturb their orbits. We examined the fluctuations of asymptotic directions calculating their orbits by the Monte-Carlo simulation, based on the theory of the multiple scattering process. It is shown that the dispersion of the projected deviation angle is determined mainly by the scattering mean free path and by the structure of the order magnetic field, e.g. the polarity state of the heliomagnetosphere and the extent of the neutral sheet. We investigated also the influence of the fluctuations of asymptotic directions on the sidereal daily variation. It is found that, under some conditions, the scattering causes only the attenuation of the amplitude of the basic vector, and does not change its phase. The attenuation is negligibly small at high rigidities larger than ~ 1000 GV, but becomes more serious with decreasing rigidity. The rigidity dependence curve of the attenuation rate was calculated for various cases. A simple and approximate method is also presented for the derivation of those curves for any value of the magnitude of the mean free path and for various model magnetospheres. It is noted, however, that the lower limiting rigidity below which the present method is not applicable is relatively high in the Positive polarity state.  相似文献   
2.
3.
In situ oxygen isotopic measurements of primary and secondary minerals in Type C CAIs from the Allende CV3 chondrite reveal that the pattern of relative enrichments and depletions of 16O in the primary minerals within each individual CAI are similar to the patterns observed in Types A and B CAIs from the same meteorite. Spinel is consistently the most 16O-rich (Δ17O = −25‰ to −15‰), followed by Al,Ti-dioside (Δ17O = −20‰ to −5‰) and anorthite (Δ17O = −15‰ to 0‰). Melilite is the most 16O-depleted primary mineral (Δ17O = −5‰ to −3‰). We conclude that the original melting event that formed Type C CAIs occurred in a 16O-rich (Δ17O  −20‰) nebular gas and they subsequently experienced oxygen isotopic exchange in a 16O-poor reservoir. At least three of these (ABC, TS26F1 and 93) experienced remelting at the time and place where chondrules were forming, trapping and partially assimilating 16O-poor chondrule fragments. The observation that the pyroxene is 16O-rich relative to the feldspar, even though the feldspar preceded it in the igneous crystallization sequence, disproves the class of CAI isotopic exchange models in which partial melting of a 16O-rich solid in a 16O-poor gas is followed by slow crystallization in that gas. For the typical (not associated with chondrule materials) Type C CAIs as well for as the Types A and B CAIs, the exchange that produced internal isotopic heterogeneity within each CAI must have occurred largely in the solid state. The secondary phases grossular, monticellite and forsterite commonly have similar oxygen isotopic compositions to the melilite and anorthite they replace, but in one case (CAI 160) grossular is 16O-enriched (Δ17O = −10‰ to −6‰) relative to melilite (Δ17O = −5‰ to −3‰), meaning that the melilite and anorthite must have exchanged its oxygen subsequent to secondary alteration. This isotopic exchange in melilite and anorthite likely occurred on the CV parent asteroid, possibly during fluid-assisted thermal metamorphism.  相似文献   
4.
Current measurements in the surface layer in Sagami and Suruga Bays showed existence of significant tidal currents which are considered to be mainly due to internal tides (Inaba, 1982; Ohwaki,ea al., 1991). In addition, the prevailing period of the tidal currents is semidiurnal in Sagami Bay, but diurnal in Suruga Bay. To explain this difference in the prevailing, periods, numerical experiments were carried out using a two layer model. The internal tides are generated on the Izu Ridge outside the two bays. The semidiurnal internal tide propagates into Sagami Bay having characteristics of an internal inertia-gravity wave, while it propagates into Suruga Bay having characteristics of either an internal inertia-gravity wave or an internal Kelvin wave. The diurnal internal tide behaves only as an internal Kelvin wave, because the diurnal period is longer than the inertia period. Thus, the diurnal internal tide generated on the Izu Ridge can be propagated into Suruga Bay, while it cannot propagate into the inner region of Sagami Bay, though it is trapped around Oshima Island, which is located at the mouth of Sagami Bay. The difference in the propagation characteristics between the semidiurnal and diurnal internal tides can give a mechanism to explain the difference in the prevailing periods of the internal tides between Sagami and Suruga Bays.  相似文献   
5.
The Formation and Circulation of the Intermediate Water in the Japan Sea   总被引:1,自引:0,他引:1  
In order to clarify the formation and circulation of the Japan/East Sea Intermediate Water (JESIW) and the Upper portion of the Japan Sea Proper Water (UJSPW), numerical experiments have been carried out using a 3-D ocean circulation model. The UJSPW is formed in the region southeast off Vladivostok between 41°N and 42°N west of 136°E. Taking the coastal orography near Vladivostok into account, the formation of the UJSPW results from the deep water convection in winter which is generated by the orchestration of fresh water supplied from the Amur River and saline water from the Tsushima Warm Current under very cold conditions. The UJSPW formed is advected by the current at depth near the bottom of the convection and penetrates into the layer below the JESIW. The origin of the JESIW is the low salinity coastal water along the Russian coast originated by the fresh water from the Amur River. The coastal low salinity water is advected by the current system in the northwestern Japan Sea and penetrates into the subsurface below the Tsushima Warm Current region forming a subsurface salinity minimum layer. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
6.
In this study we examine the behavior of the thermohaline circulation, as simulated by the Community Climate System Model version 3 (CCSM3), for several centuries following CO2 stabilization for the SRES B1 and A1B scenarios and for an “overshoot” scenario in which CO2 levels temporarily reach the same level as in the A1B scenario before declining to an ultimate stabilization level that is identical to the B1 case. While we find no evidence for irreversible changes of the thermohaline circulation in the overshoot experiment, the interplay of the different timescales of the temperature response of the surface and interior ocean does lead to a number of differences in the long-term response of the ocean between it and the B1 stabilization scenario where the same GHG levels are approached by different paths. The stronger initial warming and its slow penetration into the deeper ocean, followed by a transient surface cooling in the overshoot scenario leads to lower static stability, deeper mixing, and a more rapid recovery of the thermohaline circulation than in the B1 stabilization scenario. While the overshoot scenario recovers surface conditions (e.g. SST, sea ice extent) very similar to the B1 scenario shortly after reaching the same GHG levels, the additional accumulation of heat in the interior ocean during the period of higher forcing causes the global mean ocean temperature and steric sea level to remain higher than in the B1 stabilization scenario for at least another several centuries.  相似文献   
7.
Numerical experiments on double-diffusive intrusions are reviewed briefly. Though the number of studies is very limited at present, they have undoubtedly an advantage that a heat–salt system can be studied without undesired heat loss from the boundaries.Several possibilities for future numerical experiments are summarized.  相似文献   
8.
It is demonstrated that the long term variation in cosmic ray intensity I(t) can be described by an integral equation,
I(t)=I?0f(τ)S(t?τ) dτ
, which is derived from a generalization of Simpson's coasting solar wind model. A source function S(t?τ) is given by some appropriate solar activity index at a time t?τ(τ ? 0) and the characteristic functionf(τ)(?0 forτ ? 0) expresses the time dependence of the efficiency of the intensity depression due to solar disturbances represented by S(t ?τ) when the disturbances generated at the solar surface propagate through the modulating region with the solar wind. It is demonstrated further that the equation can be derived from the general diffusion-convection theory on some assumptions, and as a result, the source and characteristic functions can be related to diffusion coefficient and its transition in space. Assuming the sunspot number R (or two activity indices including R) as the source function, the characteristic function f(τ) [or f(τ)'s] is obtained with data of the cosmic ray intensity extended over several decades. Based on the theory, one can obtain from f(τ) the following physical quantities in space, such as the transition and life time of solar disturbances, the boundary of the modulating region, and the radial and time dependences of the diffusion coefficient, radial density gradient and modulated intensity of cosmic rays. Results deduced from the present analysis are consistent with those obtained directly or indirectly by space observations.  相似文献   
9.
138Ce/142Ce isotope ratios in Cenozoic island arc volcanic rocks are reported for the first time, together with isotope ratios of Nd and Sr and abundances of REE, Ba and Sr. The island arc volcanics studies here are boninites from Chichijima, the Bonin Islands, and basalts and andesites from the Solomon Islands. REE patterns of the island arc volcanic rocks from the Solmon Islands and the Bonin Islands are confirmed to have negative Ce anomalies. It is also disclosed that the majority of these island arc volcanic rocks show mainly positive values for both Ce and Nd. It is shown that these Ce and Ce values can hardly be interpreted by simple mixing between MORB and oceanic or continental crustal rocks; the former have positive Nd and negative Ce and the latter have negative Ce and positive or negative Nd. Existence of sources having positive Ce and Nd values is strongly suggested. If the sources are assumed to have been fractionated from CHUR (chondritic uniform reservoir) at the early or middle Precambrian era, the sources from which the volcanics were derived are concluded to have kept concave REE patterns with larger (La/Ce)N and smaller (Nd/Sm)N ratios than chondritic values over a substantial period of time, until the time of Cenozoic magmatism forming island arc volcanic rocks in question. During the periods of the Cenozoic magmatic activities and their related events, Ce anomalies are considered to have been created. From Ce and Nd isotope ratios, however, it is difficult to determine which of the following processes was responsible for the Ce anomaly; the incorporation process of subducted oceanic crust into magma at the mantle or the slab dehydration and metasomatism process. Nevertheless, so far as Ce and Nd isotopic ratios are concerned, incorporation of oceanic sediments did not take place to any clearly detectable degree.  相似文献   
10.
Amoeboid olivine aggregates (AOAs) in primitive carbonaceous chondrites consist of forsterite (Fa<2), Fe,Ni-metal, spinel, Al-diopside, anorthite, and rare gehlenitic melilite (Åk<15). ∼10% of AOAs contain low-Ca pyroxene (Fs1-3Wo1-5) that is in corrosion relationship with forsterite and is found in three major textural occurrences: (i) thin (<15 μm) discontinuous layers around forsterite grains or along forsterite grain boundaries in AOA peripheries; (ii) 5-10-μm-thick haloes and subhedral grains around Fe,Ni-metal nodules in AOA peripheries, and (iii) shells of variable thickness (up to 70 μm), commonly with abundant tiny (3-5 μm) inclusions of Fe,Ni-metal grains, around AOAs. AOAs with the low-Ca pyroxene shells are compact and contain euhedral grains of Al-diopside surrounded by anorthite, suggesting small (10%-20%) degree of melting. AOAs with other textural occurrences of low-Ca pyroxene are rather porous. Forsterite grains in AOAs with low-Ca pyroxene have generally 16O-rich isotopic compositions (Δ17O < −20‰). Low-Ca pyroxenes of the textural occurrences (i) and (ii) are 16O-enriched (Δ17O < −20‰), whereas those of (iii) are 16O-depleted (Δ17O = −6‰ to −4‰). One of the extensively melted (>50%) objects is texturally and mineralogically intermediate between AOAs and Al-rich chondrules. It consists of euhedral forsterite grains, pigeonite, augite, anorthitic mesostasis, abundant anhedral spinel grains, and minor Fe,Ni-metal; it is surrounded by a coarse-grained igneous rim largely composed of low-Ca pyroxene with abundant Fe,Ni-metal-sulfide nodules. The mineralogical observations suggest that only spinel grains in this igneous object were not melted. The spinel is 16O-rich (Δ17O ∼ −22‰), whereas the neighboring plagioclase mesostasis is 16O-depleted (Δ17O ∼ −11‰).We conclude that AOAs are aggregates of solar nebular condensates (forsterite, Fe,Ni-metal, and CAIs composed of Al-diopside, anorthite, spinel, and ±melilite) formed in an 16O-rich gaseous reservoir, probably CAI-forming region(s). Solid or incipiently melted forsterite in some AOAs reacted with gaseous SiO in the same nebular region to form low-Ca pyroxene. Some other AOAs appear to have accreted 16O-poor pyroxene-normative dust and experienced varying degrees of melting, most likely in chondrule-forming region(s). The most extensively melted AOAs experienced oxygen isotope exchange with 16O-poor nebular gas and may have been transformed into chondrules. The original 16O-rich signature of the precursor materials of such chondrules is preserved only in incompletely melted grains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号