首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
大气科学   1篇
地质学   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Rice paddies as a methane source   总被引:8,自引:0,他引:8  
Rice fields are considered to be among the highest sources of atmospheric methane, an important source of global warming. In order to meet the projected rice needs of the increasing world population, it is estimated that the annual world's rough rice production must increase to 760 million tons (a 65% increase) in the next 30 years. This will increase methane emissions from ricefields if current technologies are kept. Methane emissions from ricefields are affected by climate, water regime, soil properties, and various cultural practices like irrigation and drainage, organic amendments, fertilization, and rice cultivars. Irrigated rice comprises 50% of the world-harvested rice area and contributes 70% to total rice production. Because of assured flooding during the growing period it is the primary source of methane. Rainfed rice emits less methane due to periods of droughts. Upland rice, being never flooded for a significant period of time, is not a significant source of methane. There is great potential to develop no regret mitigation options that are in accordance with increasing rice production.  相似文献   
2.
Activities to provide energy for an expanding population are increasingly disrupting and changing the concentration of atmospheric gases that increase global temperature. Increased CO2 and temperature have a clear effect on growth and production of rice as they are key factors in photosynthesis. Rice yields could be increased with increased levels of CO2, however, the rise of CO2 may be accompanied by an increase in global temperature. The effect of doubling CO2 levels on rice production was predicted using rice crop models. They showed different effects of climate change in different countries. A simulation of the Southeast Asian region indicated that a doubling of CO2 increases yield, whereas an increase in temperature decreases yield.Enhanced UV-B radiation resulting for stratographic ozone depletion has been demonstrated to significantly reduce plant height, leaf area and dry weight of two rice cultivars under glasshouse conditions. Data are still insufficient, however, for conclusive results on the effect of UV-B radiation on rice growth under field conditions.Rice production itself has a significant effect on global warming and atmospheric chemistry through methane emission from flooded ricefields. Water regime, soil properties and the rice plant are major factors controlling the flux of methane in ricefields. Global and regional estimates of methane emission rates are still highly uncertain and tentative. Integration of mechanistic modeling of methane fluxes with geographic information systems of factors controlling these processes are required to improve estimates and predictions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号