首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   1篇
地质学   2篇
海洋学   2篇
天文学   1篇
  2016年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2003年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Alteration zones (more commonly foot wall alteration zones) are related to volcanic-hosted massive sulfide (VMS) deposits and represent unique features that may be targeted during exploration. Of these, the chloritic foot wall alteration pipe is the most extensive and characteristic of VMS deposits. This feature is geochemically identified by a strong relative enrichment in aluminium and magnesium and a coupled depletion in calcium and sodium, giving rise to chloritic rocks in the primary environment of formation. During high grade regional metamorphism such chloritic precursor rock types are replaced by an unusual mineral paragenesis, typically containing magnesium rich cordierite, phlogopite, orthoamphiboles or orthopyroxenes and aluminium rich minerals such as sillimanite and corundum. This suggests that the unusual geochemical features of the alteration zone, retained during the deformation and metamorphism, should be recognisable in lithogeochemical exploration.The massive sulfide deposit in the eastern part of the metamorphic Namaqua Province, South Africa, at Areachap, Kantienpan and the defunct Prieska Cu–Zn Mine are hosted by a Mid-Proterozoic volcano sedimentary succession known as the Areachap Group. These deposits were affected by a complex deformation and metamorphic history and represent examples of upper amphibolite to granulite grade metamorphosed VMS deposits.The application of the known lithogeochemical methods is especially complicated where the geology is not well understood, due to the poor rock exposure of complexly deformed and metamorphosed areas, such as in the eastern part of the Namaqua Province.The box plot presents a more readily applicable lithogeochemical method to characterize and identify the alteration process, but it was designed for relatively un-metamorphosed environments. It is demonstrated here that the box plot may also be applied to high-grade metamorphic terrains and that the mineral phases used in defining the boxplot in low grade metamorphic environments may be replaced by their equivalents in high grade metamorphic terrains. The compositional trends of the metamorphic minerals themselves may be used in defining the boxplot for high grade metamorphic terrains. These include the transition of: annite to phlogopite; grossular to almandine or pyrope, augite to enstatite or clinoenstatite, and hornblende to gedrite or cummingtonite. Close to the ore zone, the relative Mg content of pyroxene, cordierite and biotite are higher than further away from this zone. It could be demonstrated that the changes in the mineral compositions are gradational when comparing unaffected rocks with progressively more altered wall rocks.Conclusions based on an application of the isocon method demonstrate that primary footwall alteration zones in the Areachap Group's VMS deposits are characterized by elemental depletion of Na2O, CaO, Sr, Ni, V and La and enrichment of MgO, Fe2O3(total), S, Zn, SiO2, Co and F. It is shown that the whole rock compositions of rocks that were independently identified as the metamorphic equivalents of altered rocks, using the isocon method, plot in the correct place in the box plot for high grade regionally metamorphosed terrains. This establishes the box plot as an effective and practical tool for lithogeochemical exploration for VMS deposits in complexly deformed high grade metamorphosed terrains.  相似文献   
2.
3.
4.
In this paper we consider a Linear Regression Model with a design matrix that fits the periodic structure of a time series. As a consequence, the residuals are very often autocorrelated. The main problem is that residual autocorrelation does not necessarily entail error autocorrelation. To analyse the effects of selecting different formulations to accommodate the autocorrelation in the residuals, we consider two seemingly different ways to deal with this problem: the Linear Regression Model with the error terms following an Autoregressive Stationary Process and the Partial Adjustment Model. We study the equivalence between the two formulations. We go over the problem of estimating the parameters and, especially, of making inferences in this framework. After parameter estimation, we analyse the adequacy of the models. We demonstrate that the issue of selecting the most appropriate model to capture the autocorrelation in the residuals is, in this context, a kind of an artefact since the main results concerning the fitted values and forecasting features are the same. These modelling procedures are applied to the Portuguese coastal upwelling data and we compare the estimated models.  相似文献   
5.
6.
An analysis of 9 years of data from the NW subtropical Atlantic reveals that variability in heterotrophic processes associated with (sub)mesoscale features has a major impact on the balance between photosynthesis and respiration. Higher indirect estimates of net community production (NCPe) are associated with the center of Mode Water Eddies (MWE) and frontal regions between cyclonic and anticyclonic eddies (CA). The increase in NCPe observed at the center of MWE is driven mainly by an increase in autotrophic production, whereas in CA enhanced NCPe rates are the result of an important reduction in bacterial respiration. Both features also exhibit a decrease in nitrate concentration, consistent with nutrient consumption, and relative increases in oxygen anomaly and particulate and dissolved organic carbon in the upper 200 m. Plankton community composition in CA and MWE is characterized by the reduction in bacterial biomass, and the dominance of Prochlorococcus and Synechococcus in CA, and diatoms and dinoflagellates in MWE. Contrary to a common assumption, these results show for the first time that in ecosystems influenced by (sub)mesoscale dynamics, respiration can be as variable as photosynthesis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号