首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地质学   3篇
  2007年   1篇
  2005年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Accessory phases and minor components in minerals are commonly ignored in thermodynamic modelling. Such an approach seems unwarranted, as accessory phases can represent a significant element reservoir and minor components can substantially change their host mineral's stability field. However, a lack of thermodynamic data prohibits assessment of these effects. In this contribution, the polyhedron method is used to estimate the thermodynamic properties of tourmaline, a common and widespread accessory phase, stable over a range of P–T–X conditions. The polyhedron method allows Δ H , S , V , C P and V m ( T , P ) properties to be estimated from a linear stoichiometric summation over the fractional properties of its polyhedron constituents. To allow for estimates of tourmaline, fractional thermodynamic properties for BIII and BIV polyhedra were derived. Mixing contributions to molar volume were evaluated and symmetrical mixing parameters derived for Al-Mg, Al-Fe and Al-Li interaction on tourmaline's Y-site and T-site Al-Si interaction. Evaluation of the estimated properties using experimental and natural equilibria between tourmaline and melts, minerals and hydrothermal fluids, shows that reliable semi-quantitative results are obtained. The boron contents in fluids coexisting with tourmaline are calculated to within an order of magnitude of measured content, and where anchor-points are available, agreement improves to within a factor of 2. Including tourmaline in petrogenetic modelling of metamorphic rocks indicates that its presence leads to disappearance of staurolite and garnet, among others, and modifies the X Mg of coexisting phases, in line with observations on natural rocks.  相似文献   
2.
Thermodynamic calculations in petrology are generally performed at pressures and temperatures beyond the standard state conditions. Accurate prediction of mineral equilibria therefore requires knowledge of the heat capacity, thermal expansion and compressibility for the minerals involved. Unfortunately, such data are not always available. In this contribution we present a data set to estimate the heat capacity, thermal expansion and compressibility of mineral end‐members from their constituent polyhedra, based on the premise that the thermodynamic properties of minerals can be described by a linear combination of the fractional properties of their constituents. As such, only the crystallography of the phase of interest needs to be known. This approach is especially powerful for hypothetical mineral end‐members and for minerals, for which the experimental determination of their thermodynamic properties is difficult. The data set consists of the properties for 35 polyhedra in the system K–Na–Ca–Li–Be–Mg–Mn–Fe–Co–Ni–Zn–Al–Ti–Si–H, determined by multiple linear regression analysis on a data set of 111 published end‐member thermodynamic properties. The large number of polyhedra determined allows calculation of a much larger variety of phases than was previously possible, and the choice of constituents together with the large number of thermodynamic input data results in estimates with associated uncertainty of generally <5%. The quality of the data appears to be sufficiently accurate for thermodynamic modelling as demonstrated by modelling the stability of margarite in the CASH system and the position of the talc–staurolite–chloritoid–pyrope absent invariant point in the KMASH system. In both cases, our results overlap within error with published equivalents.  相似文献   
3.
The thermodynamic properties of silicate minerals can be described as a linear combination of the fractional properties of their constituent polyhedra. In contrast, given the thermodynamic properties of these polyhedra, the thermodynamic properties of minerals can be estimated, where only the crystallography of the mineral needs to be known. Such estimates are especially powerful for hypothetical mineral end‐members or for minerals where experimental determination of their thermodynamic properties is difficult. In this contribution the fractional enthalpy, entropy and molar volume for 35 polyhedra have been determined using weighted multiple linear regression analysis on a data set of published mineral thermodynamic properties. The large number of polyhedra determined, allows calculation of a much larger variety of phases than was previously possible and the larger set of minerals used provides more confident fractional properties. The OH‐bearing minerals have been described by partial and total hydroxide coordinated components, which gives better results than previous models and precludes the need of a SV term to improve estimates of entropy. However, the fractional thermodynamic properties only give adequate results for silicate minerals and double oxides, and should therefore not be used to estimate the properties of other minerals. The thermodynamic properties of ‘new’ minerals are calculated from a linear stoichiometric combination of their constituent polyhedra, resulting in estimates generally with associated uncertainty of <5%. The quality of such data appears to be of sufficient accuracy for thermodynamic modelling as shown for meta‐bauxites from the Alps and the Aegean, where the effect of Zn on the PT stability of staurolite can be both qualitatively and quantitatively reproduced.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号