首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
地球物理   1篇
地质学   10篇
海洋学   2篇
自然地理   4篇
  2023年   1篇
  2020年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2005年   2篇
  2003年   2篇
  1998年   1篇
排序方式: 共有17条查询结果,搜索用时 24 毫秒
1.
The aim of this paper is to quantify the evolution in time and space of the accommodation (space available for sedimentation) in the case of a growth fault structure resulting from gravity‐induced extension comprising a listric fault/raft system located along the West African margin. To achieve this, use was made of an original approach combining two complementary techniques (accommodation variation measurements and 3‐D restoration) in order to quantify vertical and horizontal displacement related to deformation, using a data set made up of a 3‐D seismic survey and well logs. We applied sequence stratigraphic principles to (i) define a detailed stratigraphic framework for the Albo‐Cenomanian and (ii) measure subsidence rates from accommodation variations. 3‐D restoration was used to (iii) reconstruct the evolution of the 3‐D geometry of the fault system. The rates of horizontal displacement of structural units were measured and linked to successive stages in the growth of the fault system. Subsidence of the structural units exhibits three scales of variation: (1) long‐term variation (10 Ma) of c. 80 m Ma?1 for a total subsidence of about 1400 m, compatible with the general subsidence of a passive margin, and (2) short‐term variations (1–5 Ma) corresponding to two periods of rapid subsidence (about 150–250 m Ma?1) alternating with periods of moderate subsidence rate (around 30 m Ma?1). These variations are linked to the development of the fault system during the Albian (with downbuilding of the raft and development of the initial basin located in between). During the Cenomanian, the development of the graben located between the lower raft and the initial basin did not seem to affect the vertical displacements. (3) High‐frequency variations (at the scale of genetic unit sets) range between ?50 and 250 m for periods of 0.2–2 Ma. Accommodation variations governed these cycles of progradation/retrogradation rather than sediment flux variations. In addition, the nine wells display a highly consistent pattern of variation in accommodation. This suggests that the genetic unit sets were controlled at a larger scale than the studied system (larger than 20 km in wavelength), for example, by eustatic variations. Translation rates are between 3 and 30 times higher than subsidence rates. Therefore, in terms of amplitude, the main parameter controlling the space available for sedimentation is the structural development of the fault system, that is to say, the seaward translation of the raft units, itself resulting from a regional gravity‐driven extension.  相似文献   
2.
Facies, depositional model and stratigraphic architecture of Pleistocene giant Gilbert-type fan deltas are presented, based on outcrop data from the Derveni–Akrata region along the southern coast of the Gulf of Corinth, Greece. The common tripartite consisting of topset, foreset and bottomset [Gilbert, G.K., 1885. The topographic features of lake shores: Washington, D.C., United States Geol. Survey, 5th Annual Report, 69–123.] has been identified, as well as the most distal environment consisting of turbidites, and is organised in a repetitive pattern of four main systems tracts showing a clear facies and volumetric partitioning.The first systems tract (ST1) is characterised by the lack of topset beds and the development of a by-pass surface instead, thick foresets and bottomset beds, and thick well-developed turbiditic systems. This systems tract (ST1) is organised in an overall progradational pattern. The second systems tract (ST2) is characterised by a thin topset and almost no foreset equivalent. This systems tract is not always well-preserved and is organised in an overall retrograding trend with a landward shift in the position of the offlap break. The offshore is characterised by massive sandy turbidites. The third systems tract (ST3) is characterised by small-scale deltas prograding above the staked topsets of the giant Gilbert-type fan delta. Those small Gilbert-type fan deltas are generally organised in a pure progradation evolving to an aggradational–progradational pattern. In the distal setting of those small Gilbert-type fan deltas, almost no deposits are preserved on the remaining topography of the previous Gilbert-type fan delta. The fourth systems tract (ST4) is characterised by continuous vertically aggrading topsets that laterally pass into aggrading and prograding foresets. Bottomsets and distal turbiditic systems are starved. This fourth systems tract (ST4) is organised in an overall aggrading trend.These giant Gilbert-type fan deltas correspond to the Middle Group of the Corinth Rift infill and their stratigraphic development was strongly influenced by evolving rift structure. They record the migration of the depocenter from the rift shoulder to the rift axis in four main sequences from ca. 1.5 to 0.7 Ma, related to the migration of fault activity. It is worth noting that the maximum paleobathymetry was recorded during the final stage of the progradation of the Middle Group, suggesting that the rift climax was diachronous at the scale of the entire basin. The rapid (< 1 Ma) structural and sedimentological evolution, the migration of fault activity as well as the youth of the Corinth Rift, are probably exceptional factors allowing the characterisation of such diachronism.  相似文献   
3.
Robin  Guillocheau  & Gaulier 《地学学报》1998,10(6):323-329
The quantification of tectonic and eustatic factors in the control of the sedimentary record is one of the main questions in sedimentary basin dynamics. We propose two methods allowing: (i) 3D measurement of accommodation at basin scale and (ii) to decipher between local (10–100 km wavelength) and basin-scale accommodation. The local signal is necessarily of tectonic origin, the basin-scale signal is of both eustatic and large tectonic origin. The measurement of accommodation requires (a) high-resolution time-lines calibrated in ages (sequence stratigraphy on well-logs and biostratigraphy on cores), (b) decompacted lithologies (well-logs), and (c) palaeodepth/palaeoaltitude (sedimentology and well-logs). Application of these methods to the intracratonic Paris basin during the Lias (early Jurassic) suggests a tectonic origin for the 1–5 Myr stratigraphic cycles, with basin-scale flexure during transgressive half-cycles, and 10–100 km uplift of basement units, during regressive half-cycles.  相似文献   
4.
The Cretaceous and Cenozoic fill of the continental margins of southern Africa (South‐East Atlantic and Agulhas Margins) contains a continuous record of sediment supplied from the South African Plateau (SAP) for the past 134 million years. Estimates of solid sediment volumes deposited offshore were calculated from isopach maps and extrapolated vertical cross‐sections derived from a large amount of industrial geophysical data. Solid phase volumes and accumulation rates were calculated for six epochs: Lower Cretaceous (134–113 Ma), Mid Cretaceous (113–93.5 Ma), Upper Cretaceous (93.5–81 and 81–66 Ma), Palaeogene (66–25 Ma), Neogene (25–0 Ma). Our new compilation demonstrates the existence of two periods of elevated flux. The most important one occurs in the late Cretaceous (93.5–66 Ma) and was synchronous with an acceleration of onshore denudation as shown by thermochronometric data. After a period of extremely low accumulation rate, the second phase of elevated flux started in the Oligocene (~30–25 Ma) until present‐day. From these observations we suggest that the main phase of uplift of the SAP took place during the Upper Cretaceous. Two mechanisms, namely uplift caused by lithospheric delamination or by dynamic topography caused by the continent moving over the African Superplume, are viable explanations for our observations. The more recent and lower amplitude episode of enhanced accumulation rates is likely to correspond to a second period of uplift, potentially associated with the onset of uplift and extension along the East African Rift System.  相似文献   
5.
The terrigeneous sediment budget of passive margin basins records variations in continental relief triggered by either deformation or climate. Consequently, it becomes a major challenge to determine sediment accumulation histories in a large number of basins found in various geodynamic contexts. In this study, we developed a GIS‐based method to determine the sediment budget at the scale of a whole basin (from the upstream continental onlap to the most distal deepest marine deposits) and the associated uncertainties. The volume of sediments preserved in the basin for each time interval was estimated by interpolation between cross‐sections and then corrected from in situ production and porosity to obtain terrigeneous solid volumes. This approach was validated by applying it to Namibia–South African passive margin basins for which independent data are available. We determined by a statistical approach the variances associated with each parameter of the method: the geometrical extrapolation of the section (8–43%), the uncertainties on seismic velocities for the depth conversion (2–10%), on the absolute ages of stratigraphic horizons (0.2–12%), on the carbonate content (0.2–46%) and on remaining porosities estimation (3–5%). Our estimates of the accumulated volumes were validated by comparison with previous estimates at a lower temporal resolution in the same area. We discussed variations in accumulation rates observed in terms of relief variations triggered by climate and/or deformation. The high accumulation rates determined for the Lower Cretaceous, progressively decreasing to a minimum in the Mid‐Cretaceous, are consistent with the progressive relaxation of a rift‐related relief. The following increase to an Upper Cretaceous maximum is consistent with a major relief reorganization driven either by an uplift and/or a change to more humid climate conditions. The lower accumulation rate in the Cenozoic suggests a relief reorganization of lesser amplitude over that period.  相似文献   
6.
The South African plateau is bordered by passive margin basins preserving the terrigeneous sediment produced during onshore erosion. As such, these basins potentially provide a record of the variation in onshore elevation and relief over time. Here we bring new constraints on the uplift and erosion of the Southern African plateau over the last 150 Ma from the perspective of the stratigraphic architecture of these basins. We review published data to quantify the terrigeneous supply eroded in the drainage area and preserved in the basins. The novel aspect of our approach is the integration of the evolution of the whole domain in sedimentation (i.e. not only the platform) as well as the onshore eroding region.  相似文献   
7.
Intracontinental elevated plateaus remain geomorphologic features which are poorly studied. Their genesis requires a coupling between climate and deformation. The Fish River canyon (southern Namibia), the second largest canyon of the Earth, carved the South-African plateau on 550 m along 65 km. This study reveals that the upper and the lower segments are shaped by NE–SW and north-south grabens, respectively. These deformations increased the meandering and the vertical incision mainly in the lower canyon. However the river main trend was not drastically modified attesting that the river was ancient and that the rate of the vertical displacement was slow compared to the erosion rate. The main incision occurred during a NW–SE stretching of Plio-Pleistocene. These stretching episodes belong to two deformation phases previously poorly described in the South-African plateau. These widespread stretching phases are interpreted as a result of deep mantle dynamics affecting the inner African continent.  相似文献   
8.
The thermal history of the central part of the Paris basin is reconstructed using C31 hopane S/R isomerisation ratios and organic matter transformation ratios measured on Lower Toarcian and Callovo-Oxfordian samples. Maximum burial palaeotemperatures range between 90 and 115?°C for the Toarcian shales, and between 75 and 95?°C for the Callovo-Oxfordian samples, from the East to the centre of the basin, respectively. The amount of Late Cretaceous erosion was evaluated to be between ca. 400 to 600 m in the eastern part of the studied area and 100 to 300 m in the centre of the basin. To cite this article: C. Ménétrier et al., C. R. Geoscience 337 (2005).  相似文献   
9.
10.
An integrated study of the stratigraphy, structure, sedimentology, and geomorphology of the Akrata–Derveni region (southern coast of the Gulf of Corinth, Greece) forms the basis for a tectono-stratigraphic model for the evolution of the Plio-Pleistocene central Corinth Rift.

The syn-rift sediments exposed on the uplifted southern coast of the Gulf of Corinth comprise three stratigraphic groups. Maximum total thickness of the syn-rift sediments can reach 2800 m in the middle of the studied area. The Lower Group is made of fluvio-lacustrine deposits. The Middle Group corresponds to thick alluvial fan conglomerates and their equivalent Gilbert-type fan deltas that built toward the north. The Upper Group is composed of uplifted terrace deposits, slope breccias and small Gilbert-type deltas. These groups have been subdivided into informal formations and depositional systems. Restoration of the stratigraphic architecture along a N–S transect provides a linked structural and depositional model for this part of the rift. Reconstruction of the latest phases of uplift is based on a study of geomorphological features.

Evolutionary phases include, (1) an overall increase in accommodation space during deposition of the Lower and Middle Groups followed by (2) a drastic decrease in accommodation space during deposition of the Upper Group. Sedimentary signals indicate that most of the major normal faults were active during deposition of the Lower Group. The depocentre was located in the middle part of the study area and paleocurrents were predominantly toward the ENE. The main depositional system shifted south at the onset of deposition of the Middle Group, recording a widening and deepening of the rift. This major event also corresponds to a change in paleocurrent direction to a clear northward polarity. The southernmost border fault, the Killini Fault, was sealed during deposition of the Middle Group. A northward migration of fault activity was associated with northward progradation of giant Gilbert-type fan deltas that record water depths up to 500 m. Finally, the fan delta system was abandoned as progressive tilting to the south and uplift of the margin induced a reversal of the drainage system with the development of an endorheic depression. Sediment supply to the basin thus decreased and a forced regression took place during deposition of the Upper Group recording a northward shift of more than 5 km and a 600 m relative sea-level drop. As no major eustatic sea-level falls of such amplitude are documented during the Pleistocene, the uplift is linked to regional tectonics. Uplift and fault reactivation gave the present day configuration of the southern coast of the Gulf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号