首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   8篇
测绘学   2篇
大气科学   9篇
地球物理   37篇
地质学   50篇
海洋学   17篇
天文学   13篇
自然地理   29篇
  2021年   2篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   3篇
  2015年   5篇
  2014年   2篇
  2013年   10篇
  2012年   8篇
  2011年   7篇
  2010年   3篇
  2009年   9篇
  2008年   6篇
  2007年   6篇
  2006年   7篇
  2005年   4篇
  2004年   7篇
  2003年   3篇
  2002年   7篇
  2001年   7篇
  2000年   7篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1988年   1篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1974年   2篇
  1970年   2篇
  1948年   1篇
  1938年   1篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
1.
Column density profiles for CN, C3, C2 and NH have been determined from a long-slit CCD spectrum of periodic comet P/Schaumasse (1992x). Comparisons of these profiles with Haser models indicate that the ratios of the CN, C3 and C2 production rates are typical for a short-period comet. Although the scale lengths for NH and its parent species are uncertain, the results indicate that the production rate for NH is much greater than for either C2 or CN.  相似文献   
2.
Zooplankton sampling has been carried out by the Continuous Plankton Recorder (CPR) survey since the 1930s enabling the study of long-term changes in plankton populations, the elucidation of seasonal patterns of abundance, and more recently providing zooplankton biomass estimates for ecosystem models. Data for zooplankton abundance collected by CPR tows in the Western English Channel (between 1988 and 1998) were compared to vertically integrated samples collected from station L4 off Plymouth, UK. Comparisons were made for locally abundant copepods (including Acartia, Calanus, Para/Pseudocalanus, Centropages, Oithona and Temora) collected by CPR and WP-2 nets. All dominant species recorded at L4 were also common to the CPR data. However, the position of the taxa in the two datasets was not equivalent. Seasonal cycles revealed by CPR data were significantly similar to those recorded throughout the water column at L4 for most taxa. However, absolute levels of abundance differed for the two datasets: abundances were underestimated by CPR samples when compared to those of vertically integrated samples by a factor of between 2 and 35, with the exception of Centropages. The differing mesh sizes (200 and 270 μm) of the WP-2 net and CPR mesh could only partially explain these differences in abundance, implying that the behaviour of individual taxa and their depth in the water column also influenced the abundance recorded.  相似文献   
3.
In this paper we review levels of net loss, what happens to the gear once it has been lost, and the resulting levels of ‘ghost catches’ made in passive net fisheries in the EU. We also consider ghost catches resulting from lost gear in other types of fisheries, and the extent to which the value of ghost catches has been quantified. We consider why fishing gear is lost, and profile common management responses. We present a cost benefit model to assess the relative cost effectiveness of different management measures, and suggest that gear retrieval programmes may provide less value for money than other management responses.  相似文献   
4.
Transgressive Upper Cretaceous Chalk terminates (between SW Wales and SE Ireland) at approximately latitude 52°N as thinly bedded marginal facies; while the Tertiary sequences, previously considered to extend uninterrupted into both the South Celtic Sea area and the Nymphe Bank basin are preserved as isolated subcrops separated by Jurassic. The distinct subsidence history of St. Georges Channel basin, as compared to the Nymphe Bank basin which both belong to the North Celtic Sea graben, is attributed to inversion activity with the final phase occurring during the Paleogene.  相似文献   
5.
This study presents evidence to show that, in addition to preserving U–Pb isotope systematics, refractory zircons also preserve, at least in part, an inherited Sm–Nd isotope component. The zircons analyzed during this study were taken from the Strontian granitoid (NW Scotland). The inner intrusion of this composite pluton is known from a previous study to contain substantial U–Pb zircon inheritance, whereas the outer part has only minor inheritance. Zircons from the inner intrusion were found to have significantly lower Nd425 values than either their host rock, separated apatite or monazite. It is argued that this isotopic disequilibrium is due to the presence of an inherited Sm–Nd isotope component, rather than being due to a post-crystallization disturbance of the zircons. The preservation of inherted Sm–Nd isotopes within refractory zircons implies that they remain closed systems with respect to the diffusion of Sm and Nd (and presumably the other REE) to temperatures in excess of 700°C. The fact that zircons commonly have high Sm/Nd ratios, relative to sialic crustal material, means that the Nd isotopic evolution of inherited zircons will be very different to that of much of the continental crust.  相似文献   
6.
We use published and new trace element data to identify element ratios which discriminate between arc magmas from the supra-subduction zone mantle wedge and those formed by direct melting of subducted crust (i.e. adakites). The clearest distinction is obtained with those element ratios which are strongly fractionated during refertilisation of the depleted mantle wedge, ultimately reflecting slab dehydration. Hence, adakites have significantly lower Pb/Nd and B/Be but higher Nb/Ta than typical arc magmas and continental crust as a whole. Although Li and Be are also overenriched in continental crust, behaviour of Li/Yb and Be/Nd is more complex and these ratios do not provide unique signatures of slab melting. Archaean tonalite-trondhjemite-granodiorites (TTGs) strongly resemble ordinary mantle wedge-derived arc magmas in terms of fluid-mobile trace element content, implying that they did not form by slab melting but that they originated from mantle which was hydrated and enriched in elements lost from slabs during prograde dehydration. We suggest that Archaean TTGs formed by extensive fractional crystallisation from a mafic precursor. It is widely claimed that the time between the creation and subduction of oceanic lithosphere was significantly shorter in the Archaean (i.e. 20 Ma) than it is today. This difference was seen as an attractive explanation for the presumed preponderance of adakitic magmas during the first half of Earth's history. However, when we consider the effects of a higher potential mantle temperature on the thickness of oceanic crust, it follows that the mean age of oceanic lithosphere has remained virtually constant. Formation of adakites has therefore always depended on local plate geometry and not on potential mantle temperature.  相似文献   
7.
8.
9.
10.
Meteorite fusion crust formation is a brief event in a high‐temperature (2000–12,000 K) and high‐pressure (2–5 MPa) regime. We studied fusion crusts and bulk samples of 10 ordinary chondrite falls and 10 ordinary chondrite finds. The fusion crusts show a typical layering and most contain vesicles. All fusion crusts are enriched in heavy Fe isotopes, with δ56Fe values up to +0.35‰ relative to the solar system mean. On average, the δ56Fe of fusion crusts from finds is +0.23‰, which is 0.08‰ higher than the average from falls (+0.15‰). Higher δ56Fe in fusion crusts of finds correlate with bulk chondrite enrichments in mobile elements such as Ba and Sr. The δ56Fe signature of meteorite fusion crusts was produced by two processes (1) evaporation during atmospheric entry and (2) terrestrial weathering. Fusion crusts have either the same or higher δ18O (0.9–1.5‰) than their host chondrites, and the same is true for Δ17O. The differences in bulk chondrite and fusion crust oxygen isotope composition are explained by exchange of oxygen between the molten surface of the meteorites with the atmosphere and weathering. Meteorite fusion crust formation is qualitatively similar to conditions of chondrule formation. Therefore, fusion crusts may, at least to some extent, serve as a natural analogue to chondrule formation processes. Meteorite fusion crust and chondrules exhibit a similar extent of Fe isotope fractionation, supporting the idea that the Fe isotope signature of chondrules was established in a high‐pressure environment that prevented large isotope fractionations. The exchange of O between a chondrule melt and an 16O‐poor nebula as the cause for the observed nonmass dependent O isotope compositions in chondrules is supported by the same process, although to a much lower extent, in meteorite fusion crusts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号