首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地质学   8篇
  2019年   1篇
  2016年   1篇
  2014年   3篇
  2013年   2篇
  2010年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The state of periodic loading and the interval of periodic roof weighting have an important role in geomechanical stability and, hence, in the continuity of longwall mining operations. In this paper, the mechanism of roof caving in longwall mining—together with the effect of engineering and geomechanical properties of surrounding rock masses on the magnitude and timing of periodic loading—is studied. For this purpose, a longwall mine is first modeled using Phase2 software, and then, by simulating the roof caving process, the periodic roof weighting intervals is calculated. Based on the numerical modeling, the first roof weighting interval and the periodic roof weighting interval are calculated as 27.2 and 12.1 m, respectively. Sensitivity analysis is then applied to determine the effect of changes in the mechanical properties of the rock mass, especially in the main roof and immediate roof. The results of the analysis show that as GSI and quality of the immediate roof increases, the periodic roof weighting interval also increases. Hence, the applied algorithm in this research study can effectively be utilized to calculate the periodic roof weighting interval in the longwall mining method.  相似文献   
2.
3.
The main objective in production blasting is to achieve a proper fragmentation. In this paper, rock fragmentation the Sarcheshmeh copper mine has been predicted by developing a model using artificial neural network. To construct the model, parameters such as burden to spacing ratio, hole-diameter, stemming, total charge-per-delay and point load index have been considered as input parameters. A model with architecture 9-8-5-1 trained by back propagation method was found to be optimum. To compare performance of the neural network, statistical method was also applied. Determination coefficient (R 2) and root mean square error were calculated for both the models, which show absolute superiority of neural network over traditional statistical method.  相似文献   
4.
Generally, knowledge of stress redistribution around the longwall panel causes a better understanding of the mechanisms that lead to ground failure, especially to rockbursts. In this paper, passive seismic velocity tomography is used to demonstrate the state of stress around the longwall mining panel. The mining-induced microseismic events were recorded by mounting an array of receivers on the surface, above the active panel. To determine the location of seismic events and execute the process of tomography, double-difference method is employed as a local earthquake tomography. Since passive sources are used, the ray coverage is insufficient to achieve the quality images required. The wave velocity is assumed to be the regionalized variable and it is therefore estimated in a denser network, by using geostatistical estimation method. Subsequently, the three-dimensional images of wave velocity are created and are sliced into the coal seam. These images clearly illustrate the stressed zones that they are appropriately in compliance with the theoretical models. Such compliance is particularly apparent in the front abutment pressure and the side abutment pressure near the tailgate entry. Movements of the stressed zones along the advancing face are also evident. The research conclusion proves that the combined method, based on double-difference tomography and geostatistical estimation, can potentially be used to monitor stress changes around the longwall mining panel continuously. Such observation could lead to substantial improvement in both productivity and safety of mining operations.  相似文献   
5.
The most important factors in multi-lateral well stability analysis are the magnitude of in situ stresses, the relation between the amount of in situ stresses and orientation of lateral wellbore. In this research, the stability analysis of multi-lateral junction is carried out using FLAC3D numerical code by considering seven varied stress regimes and different lateral wellbore orientations. The Normalized Yielded Zone Area (NYZA, ratio of surrounding yielded cross-sectional area to initial area of well) is determined for different junction mud pressures as well as diverse orientations of lateral wellbore. Then, the junction optimum mud pressure of each lateral wellbore orientation is calculated; hence, the optimum trajectory of lateral wellbore, in which the junction has got the lowest optimum mud pressure, is selected in each stress regime. The stability analysis of multi-lateral wells by means of finite difference method shows that in each stress regime the required mud pressure for the stability of junction is much more than that of the lateral branch and the main wellbore.  相似文献   
6.
Natural Hazards - Ground vibrations induced by the blasting of explosives can cause damage to the slope stability of mines. The important indicators of rock mass such as the geological...  相似文献   
7.
In the present study, a boundary element method based on the higher order displacement discontinuity formulation is presented to solve the general problem of hydraulic fracture propagation in layered formations. Displacement collocation technique is employed to model the higher order displacement variation along the crack and the special crack tip element near its ends. The hydraulic fracture propagation and its interaction with the layer interface in non-homogenous rock materials are studied by the proposed semi-analytical (hybridized boundary element-boundary collocation) method. The maximum tangential stress criterion (or σ-criterion) of fracture mechanics considering different elastic constants (Young modulus and Poisson’s ratio) is used to obtain the fracture path. The fracture propagation from stiff to soft and soft to stiff media for cracks having different inclination angles is modeled, and the effects of elastic constants on the hydraulic fracture propagation is studied. The results show that if the hydraulic fracture originates in the stiffer layer, its capability to cross the layer increases and is vice versa for the softer material. The comparison of the results gained from the numerical method with those in the literature show a good performance of the method in the case of propagation of hydraulic fracture in layered formations.  相似文献   
8.
Effective stress is one of the most important parameters which strongly affects pore volume compressibility curve, which is used in assessing the reservoir rock properties. It causes change in porosity as well as permeability of the reservoir rocks. In the present study, pore volume compressibility characteristics of the reservoir rocks at different effective stresses were used to derive the relationship of porosity and permeability with the effective stress. To this end, analytical processes for deriving the porosity–stress and permeability–stress relationships are discussed in relation to the reservoir rocks. As a result, a porosity–stress formulation is proposed which is in good agreement with the experimental data. Also, two formulas are proposed for permeability–stress relationship; one on the base of Kozeny–Carman permeability–porosity model and the other one is based on a differential form of permeability–porosity relationship. After calibrating the required coefficients for one sandstone and three limestones, it was concluded that the first permeability–stress model is the upper bound correlation while the latter is the lower bound. Furthermore, it is shown that the latter has better agreement to the real experimental data of the sansdstone samples, while the first one is close to the experimental observations from limestone samples. Also, it is concluded that structure of pores is a key factor on permeability–stress relationship, so that there is a significant difference between the experimental data and the proposed relationship for a limestone sample with vuggy pore spaces.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号