首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地质学   4篇
天文学   1篇
  2005年   1篇
  2002年   1篇
  1999年   1篇
  1995年   1篇
  1989年   1篇
排序方式: 共有5条查询结果,搜索用时 156 毫秒
1
1.
Abstract— X-ray microdiffraction measurements based on the Kossel effect have been used for orientation determinations of rhabdite (i.e., small prismatic schreibersite crystals) with respect to the kamacite matrix. For that purpose, polished specimens of the Toluca meteorite have been analyzed after surface etching. Kossel patterns of kamacite and rhabdite have been recorded and simulated. As the law of intergrowth for idiomorphic rhabdite crystals, we confirmed the relations: In comparison with typical line widths, the Kossel lines of kamacite are distinctly broadened. This is found for the meteorite Toluca and a for a second sample, the meteorite Morasko. This behaviour is probably connected with a high dislocation density, as shown by transmission electron microscope investigations.  相似文献   
2.
Alcedo volcano is one of six shield volcanoes on Isabela Islandin the western Galpagos Islands. Although Alcedo is dominantiybasaltic, it is unusual in that it also has erupted 1 km3 ofrhyolite. The rhyolitic phase marked a 10-fold decrease in themass-eruption rate of the volcano, and the volcano has returnedto erupting basalt. The basalts are tholeiitic and range fromstrongly to sparsely porphyritic. Olivine and plagiodase arethe liquidus phases in the most primitive basalts. The MgO andNi concentrations in the most primitive basalts indicate thatthey have undergone substantial differentiation since extractionfrom the mantle. The rhyolites contain the assemblage oligoclase-augite-titanomagnetite-fayalite-apatiteand sparse xenoliths of quenched basalt and cumulate gabbros.Intermediate rocks are very rare, but some are apparently basaltrhyolitehybrids, and others resulted from differentiation of tholeiiticmagma. Several modeling approaches and Sr-, Nd-, and O-isotopicdata indicate that the rhyolites resulted from 90% fractionation(by weight) of plagiodase, augite, titanomagnetite, olivine,and apatite from the most primitive olivine tholeiite. The dataare inconsistent with the rhyolites originating by crustal anatexis.The extreme Daly gap may be caused by the large increase inviscosity as the basaltic magma differentiates to intermediateand siliceous compositions; highly evolved magmas are eruptibleonly after they become saturated with volatiles by second boiling.The close association of the hybrid intermediate magmas andmagmatic inclusions with the climactic plinian eruption indicatesmixing between mafic and silicic magmas immediately before eruption.Rhyolite production was favored by the decrease in supply ofbasaltic magma as Alcedo was carried away from the focus ofthe Galpagos hotspot. A three-stage model for the magmaticevolution of a Galpagos volcano is proposed. In the first stage,the supply of basaltic magma is large. Basaltic magma continuallyintrudes the subcaldera magma chamber, buffering the magmas'compositional and thermal evolution. As the volcano is carriedaway from the basaltic source, the magma chamber is allowedto cool and differentiate, as exemplified by Alcedo's rhyoliticphase. Finally, the volcano receives even smaller influx ofbasalt, so a large magma chamber cannot be sustained, and thevolcano shifts to isolated basaltic eruptions. KEY WORDS: Galpagos; oceanic rhyolites; fractional crystallization; Isabela Island *Corresponding author, e-mail: Geist{at}IDUI1.csrv.uidaho.edu. Telephone: 208-885-6491. Fax: 208-885-5724  相似文献   
3.
Wolf volcano, an active shield volcano on northern Isabela Islandin the Galápagos Archipelago, has undergone two majorstages of caldera collapse, with a phase of partial calderarefilling between. Wolf is a typical Galápagos shieldvolcano, with circumferential vents on the steep upper carapaceand radial vents distributed in diffuse rift zones on the shallower-slopinglower flanks. The radial fissures continue into the submarineenvironment, where they form more tightly focused rift zones.Wolf's magmas are strikingly monotonous: estimated eruptivetemperatures of the majority of lavas span a total of only 22°C.This homogeneity is attributed to buffering of magmas as theyascend through a thick column of olivine gabbroic mush thathas been deposited from a thin, shallow (<2 km deep) subcalderasill that is in a thermochemical steady state. Wolf's lavashave the most depleted isotopic compositions of any historicallyactive intraplate ocean island volcano on the planet and haveisotopic compositions (except for 3He/4He) indistinguishablefrom mid-ocean ridge basalt erupted from the GalápagosSpreading Center (GSC) 250–410 km away from the peak ofinfluence of the Galápagos plume. Wolf's lavas are enrichedin incompatible trace elements and have systematic major elementdifferences relative to GSC lavas, however. Wolf's magmas resultfrom lower extents of melting, deeper melt extraction, and agreater influence of garnet compared with GSC magmas, but Wolfand the GSC share the same sources. These melt generation conditionsare attributed to melting in a thermal and mechanical boundarylayer of depleted asthenosphere at the margins of the Galápagosplume. The lower degrees of melting and extraction from deeperlevels result from a thicker lithospheric cap at Wolf than existsat the GSC. KEY WORDS: caldera; Galápagos; mush; partial melting; plume  相似文献   
4.
The Vandfaldsdalen macrodike is a layered and differentiatedgabbroic dike approximately 3?5 km long and from 200 to 500m wide. It appears to cut the eastern margin of the Skaergaardintrusion and may have served as a feeder for the Basistoppensill. The macrodike can be divided into three series of rocks:a marginal series of differentiated gabbros adjacent to thewalls of the dike; a central series of differentiated and subhorizontallylayered gabbros and ferrodiorites in the interior of the dike;and an upper felsic series of granophyric rocks with abundantquartzo-feldspathic xenoliths. The mineral and bulk-rock compositionsthrough both the marginal series and central series show progressiveiron enrichment. The most Ca-rich plagioclase (An69) and mostmagnesian pyroxene (Wo42 En46 Fs12) occur in olivine-bearingrocks of the marginal series about 5 m from the contact withwall rocks. The most Na-rich plagioclase (An39) and Fe-richpyroxene (Wo38 En24 Fs38) are in olivine-free ferrodiorite ofthe central series, about 20 m below the contact with the felsicseries. Evidence from field observations, bulk-rock chemical compositions,and Sr and Nd isotopic data indicate the felsic series formedas a mixture of the initial macrodike magma and granitic countryrock. 87Sr/86Sr ratios of specimens from the felsic series rangebetween 0?7129 and 0?7294. 143Nd/144Nd ratios vary between 0?51208and 0?51118. Both ratios vary serially with the SiO2 contentsof the specimens. We suggest that the felsic series evolvedas a separate body of low density liquid which floated on thedenser gabbroic magma of the central series. Heat from crystallizationof the gabbroic magma must have diffused into the felsic layer,enabling extensive assimilation of the granitic xenoliths, butour data indicate there was very little exchange of chemicalcomponents between the two liquids.  相似文献   
5.
Cerro Azul, one of the large shield volcanoes in the westernGalápagos archipelago, has erupted a wide range of tholeiiticto alkalic basalts. These diverse compositions include someof the most primitive yet reported from the western archipelagoand are unlike those of the other, well-studied, neighboringvolcanoes of Sierra Negra and Alcedo, which have erupted basaltof fairly uniform composition. Major- and trace-element modelingshows that Cerro Azul, Alcedo and Sierra Negra share a similardepth of melting and source composition. Modeling also revealsthat there are small, systematic differences in the extent ofpartial melting between the volcanoes that can be related totheir distance from the proposed plume center below the westernmostisland of Fernandina. However, even though melts segregatingfrom the plume in the western Galápagos reflect a narrowrange of temperatures and source compositions, there are widevariations in the enrichments of major and trace elements betweenCerro Azul, Alcedo and Sierra Negra that cannot be attributedto mantle processes. We believe the observed intershield geochemicaldifferences result from magma supply and cooling rates thatare unique to each volcano, and reflect the variations in lithospherictransport and storage processes across the western archipelago. KEY WORDS: basalt; Galápagos; magma supply; mantle plume; ocean island  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号