首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7185篇
  免费   307篇
  国内免费   92篇
测绘学   262篇
大气科学   560篇
地球物理   1656篇
地质学   2542篇
海洋学   556篇
天文学   1266篇
综合类   33篇
自然地理   709篇
  2022年   31篇
  2021年   79篇
  2020年   95篇
  2019年   133篇
  2018年   189篇
  2017年   172篇
  2016年   252篇
  2015年   186篇
  2014年   217篇
  2013年   436篇
  2012年   280篇
  2011年   368篇
  2010年   321篇
  2009年   415篇
  2008年   363篇
  2007年   307篇
  2006年   301篇
  2005年   281篇
  2004年   273篇
  2003年   222篇
  2002年   239篇
  2001年   127篇
  2000年   163篇
  1999年   121篇
  1998年   126篇
  1997年   95篇
  1996年   104篇
  1995年   93篇
  1994年   103篇
  1993年   80篇
  1992年   97篇
  1991年   75篇
  1990年   62篇
  1989年   57篇
  1988年   66篇
  1987年   60篇
  1986年   64篇
  1985年   77篇
  1984年   75篇
  1983年   83篇
  1982年   62篇
  1981年   72篇
  1980年   63篇
  1979年   68篇
  1978年   61篇
  1977年   39篇
  1976年   36篇
  1975年   32篇
  1974年   32篇
  1973年   38篇
排序方式: 共有7584条查询结果,搜索用时 31 毫秒
1.
This work provides a comprehensive physically based framework for the interpretation of the north Australian rainfall stable isotope record (δ18O and δ2H). Until now, interpretations mainly relied on statistical relationships between rainfall amount and isotopic values on monthly timescales. Here, we use multiseason daily rainfall stable isotope and high resolution (10 min) ground‐based C‐band polarimetric radar data and show that the five weather types (monsoon regimes) that constitute the Australian wet season each have a characteristic isotope ratio. The data suggest that this is not only due to changes in regional rainfall amount during these regimes but, more importantly, is due to different rain and cloud types that are associated with the large scale circulation regimes. Negative (positive) isotope anomalies occurred when stratiform rainfall fractions were large (small) and the horizontal extent of raining areas were largest (smallest). Intense, yet isolated, convective conditions were associated with enriched isotope values whereas more depleted isotope values were observed when convection was widespread but less intense. This means that isotopic proxy records may record the frequency of which these typical wet season regimes occur. Positive anomalies in paleoclimatic records are most likely associated with periods where continental convection dominates and convection is sea‐breeze forced. Negative anomalies may be interpreted as periods when the monsoon trough is active, convection is of the oceanic type, less electric, and stratiform areas are wide spread. This connection between variability of rainfall isotope anomalies and the intrinsic properties of convection and its large‐scale environment has important implications for all fields of research that use rainfall stable isotopes.  相似文献   
2.
C.B Olkin  L.H Wasserman  O.G Franz 《Icarus》2003,164(1):254-259
The mass ratio of Charon to Pluto is a basic parameter describing the binary system and is necessary for determining the individual masses and densities of these two bodies. Previous measurements of the mass ratio have been made, but the solutions differ significantly (Null et al., 1993; Young et al., 1994; Null and Owen, 1996; Foust et al., 1997; Tholen and Buie, 1997). We present the first observations of Pluto and Charon with a well-calibrated astrometric instrument—the fine guidance sensors on the Hubble Space Telescope. We observed the motion of Pluto and Charon about the system barycenter over 4.4 days (69% of an orbital period) and determined the mass ratio to be 0.122±0.008 which implies a density of 1.8 to 2.1 g cm−3 for Pluto and 1.6 to 1.8 g cm−3 for Charon. The resulting rock-mass fractions for Pluto and Charon are higher than expected for bodies formed in the outer solar nebula, possibly indicating significant postaccretion loss of volatiles.  相似文献   
3.
Abstract— It has now been about a decade since the first demonstrations that hypervelocity particles could be captured, partially intact, in aerogel collectors. But the initial promise of a bonanza of partially‐intact extraterrestrial particles, collected in space, has yet to materialize. One of the difficulties that investigators have encountered is that the location, extraction, handling and analysis of very small (10 μm and less) grains, which constitute the vast majority of the captured particles, is challenging and burdensome. Furthermore, current extraction techniques tend to be destructive over large areas of the collectors. Here we describe our efforts to alleviate some of these difficulties. We have learned how to rapidly and efficiently locate captured particles in aerogel collectors, using an automated microscopic scanning system originally developed for experimental nuclear astrophysics. We have learned how to precisely excavate small access tunnels and trenches using an automated micromanipulator and glass microneedles as tools. These excavations are only destructive to the collector in a very small area—this feature may be particularly important for excavations in the precious Stardust collectors. Using actuatable silicon microtweezers, we have learned how to extract and store “naked” particles—essentially free of aerogel—as small as 3 μm in size. We have also developed a technique for extracting particles, along with their terminal tracks, still embedded in small cubical aerogel blocks. We have developed a novel method for storing very small particles in etched nuclear tracks. We have applied these techniques to the extraction and storage of grains captured in aerogel collectors (Particle Impact Experiment, Orbital Debris Collector Experiment, Comet‐99) in low Earth orbit.  相似文献   
4.
We describe a procedure for the numerical modelling of astronomical interferometers, with particular relevance to far-infrared and submillimetre wavelengths. The scheme is based on identifying a set of modes that carry power from the sky to the detector. The procedure is extremely general, and can be used to model scalar or vector fields, in any state of coherence and polarization, the only limitation being that the propagation of a coherent field through the system be described by an integral transform, a constraint that is in practise always met.
We present simulations of ideal, multimode two-dimensional interferometers, and show that the modal theory reproduces the correct behaviour of both Michelson and Fizeau interferometers. We calculate simulated visibility data for a multimode bolometric Michelson interferometer, with a synthesized source, and produce a dirty map, recovering the original source with the usual artefacts associated with interferometers.  相似文献   
5.
A variety of measures of organic matter concentration and quality were made on samples collected from the top few mm of intertidal mudflat sediment over the course of a year, in order to assess the relative importance of biological and sedimentological influences on sedimentary organic matter. Winter and summer were times of relatively fine-grained sediment accumulation, caused by biological deposition or stabilization processes and resulting in higher organic matter concentrations. Stable carbon isotope and Br:C ratios indicated a planktonic source of bulk organic matter. Ratios of organic carbon to specific surface area of the sediments were consistent with an organic monolayer coverage of sediment grains. Correction for changing grain size during the year showed no change in the organic concentration per unit surface area, in spite of organic matter inputs by in situ primary production, buildup of heterotroph biomass and mucus coatings, and biodeposition of organic-rich seston. There were also no indications of changes in bulk organic quality, measured as hydrolyzable carbohydrates and amino acids, in response to these biological processes. It is concluded that biological processes on a seasonal time scale affect the bulk organic matter of these sediments via a modulation of grain size rather than creation or decay of organic matter.  相似文献   
6.
Abstract— We studied unshocked and experimentally (at 12, 25, and 28 GPa, with 25, 100, 450, and 750°C pre‐shock temperatures) shock‐metamorphosed Hospital Hill quartzite from South Africa using cathodoluminescence (CL) images and spectroscopy and Raman spectroscopy to document systematic pressure or temperature‐related effects that could be used in shock barometry. In general, CL images of all samples show CL‐bright luminescent patchy areas and bands in otherwise nonluminescent quartz, as well as CL‐dark irregular fractures. Fluid inclusions appear dominant in CL images of the 25 GPa sample shocked at 750°C and of the 28 GPa sample shocked at 450°C. Only the optical image of our 28 GPa sample shocked at 25°C exhibits distinct planar deformation features (PDFs). Cathodoluminescence spectra of unshocked and experimentally shocked samples show broad bands in the near‐ultraviolet range and the visible light range at all shock stages, indicating the presence of defect centers on, e.g., SiO4 groups. No systematic change in the appearance of the CL images was obvious, but the CL spectra do show changes between the shock stages. The Raman spectra are characteristic for quartz in the unshocked and 12 GPa samples. In the 25 and 28 GPa samples, broad bands indicate the presence of glassy SiO2, while high‐pressure polymorphs are not detected. Apparently, some of the CL and Raman spectral properties can be used in shock barometry.  相似文献   
7.
We report here on unique post-perihelion (2.3 AU) measurements of Comet Hale-Bopp in the FUV-range (950–1250 Å) by means of the UVSTAR spectrometer from the space shuttle with the main purpose of searching for argon and other FUV emitters. New methods for separating the strong airglow emission at shuttle altitudes are here discussed in detail. Due to our low resolution (15 Å) and S/N ratio the possible rocket-borne detection of argon near perihelion (0.9 AU) could not be confirmed. New species as N2 are suspected but difficult to separate from the strong airglow emission at shuttle altitudes. From the Lyα brightness (1.30± 0.08 kRy) a water production rate Q = 5.9 ± 0.4 × 1029 molecules s?1 could be derived and compared with other post-perihelion observations.  相似文献   
8.
We study the efficiency at which a black hole or dense star cluster spirals in to the Galactic Centre. This process takes place on a dynamical friction time-scale, which depends on the value of the Coulomb logarithm (ln Λ). We determine the accurate value of this parameter using the direct N -body method, a tree algorithm and a particle-mesh technique with up to two million plus one particles. The three different techniques are in excellent agreement. Our measurement for the Coulomb logarithm appears to be independent of the number of particles. We conclude that  ln Λ= 6.6 ± 0.6  for a massive point particle in the inner few parsec of the Galactic bulge. For an extended object, such as a dense star cluster, ln Λ is smaller, with a value of the logarithm argument Λ inversely proportional to the object size.  相似文献   
9.
10.
We describe and compare two methods of short-exposure, high-definition ground-based imaging of the planet Mercury. Two teams have recorded images of Mercury on different dates, from different locations, and with different observational and data reduction techniques. Both groups have achieved spatial resolutions of <250 km, and the same albedo features and contrast levels appear where the two datasets overlap (longitudes 270–360°). Dark albedo regions appear as mare and correlate well with smooth terrain radar signatures. Bright albedo features agree optically, but less well with radar data. Such confirmations of state-of-the-art optical techniques introduce a new era of ground-based exploration of Mercury's surface and its atmosphere. They offer opportunities for synergistic, cooperative observations before and during the upcoming Messenger and BepiColombo missions to Mercury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号