首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
地球物理   3篇
地质学   5篇
海洋学   1篇
  2024年   1篇
  2021年   1篇
  2014年   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2002年   2篇
  1998年   1篇
排序方式: 共有9条查询结果,搜索用时 46 毫秒
1
1.
Clay mineralogy and whole-rock stable isotopes (δ18O and δ13C) of Upper Cretaceous marly sediments on the Basque-Cantabrian Basin have been integrated to determine the main effects of diagenesis, palaeoclimate and tectono-sedimentary factors in sections belonging to deep- (Barrika) and platform-marine (Isla de Castro, Villamartín and Olazagutía) settings.The mean values for the clay assemblages and δ18O exhibit notable differences among the sections, partially explainable by the influence of diagenesis. The Barrika sediments, with more diagenetically advanced illite-smectite (I-S) mixed-layer (R1, 70% illite), authigenic chlorite, and low δ18O (−4.05‰ PDB), experienced higher diagenetic grade than Isla de Castro and Olazagutía, which have R0 I-S (20% illite) and heavier δ18O. Villamartín was also affected by higher diagenesis than Isla de Castro and Olazagutía, given the occurrence of R1 I-S (60% illite) and low δ18O (−4.11‰ PDB). However, the absence of other clays in Villamartín (e.g. authigenic chlorite) is indicative of less diagenetic grade than Barrika. These results show the useful integration of clay mineralogy and stable isotopes to detect different diagenetic grades in distinct marine successions of the same basin.Despite being influenced by diagenesis, the clay mineralogy partially preserves its inherited signature. This allows detection of major contents of I-S and mica, and minor kaolinite, interpreted as indicative of warm palaeoclimatic conditions. High kaolinite content in Villamartín and absence of kaolinite in Isla de Castro, though, are considered to be a product of neither diagenesis nor palaeoclimatic influences. Instead, tectono-sedimentary causes, related to unsuitable conditions for clay formation and transport from the local source areas, contributed to original clay differences. The inferred effects of diagenesis, palaeoclimate and tectono-sedimentary factors make this work important to show the potentially great variety of controls on the clay mineralogy of marine sections, which are often uncritically treated in studies concerning the Late Cretaceous.  相似文献   
2.
Living Crassostrea gigas oysters of different ages and sizes were collected in three estuaries of Cantabria (Bay of Biscay, Spain): San Vicente de la Barquera Estuary, Santander Bay, and Marismas de Santoña Estuary. The main objective was to determine different shell responses to variable environmental parameters. A shell morphological study, based on three biometric indices, indicates that oysters of Santander Bay have two significant shell anomalies: abnormal thickening of the right valve and loss of vital cavity volume. These shell abnormalities are related with the presence in these waters of the chemical tributyltin. In the other two estuaries, the oysters show no detectable anomalies. Four shell microstructures have been distinguished: Regular Simple Prismatic, Regular Foliated, cone-Complex Cross Foliated, and Chalk. In Santander Bay oysters, the Chalk forms a “root-type” framework, whereas in the other two estuaries it forms a more compact microstructure. It is proposed that exposure to tributyltin has produced this modification. High-spatial-resolution geochemical transects have been carried out on the Regular Foliated microstructure in the umbo region in order to evaluate the distribution of Mg, Sr, and Na. The elements analysed exhibit clear cyclic variations in San Vicente de la Barquera Estuary and Marismas de Santoña Estuary oysters, related with seasonal periods, and characterised by broad maxima during months in which the waters are warmer and have higher salinity. These patterns are buffered in Santander Bay oysters. Our results demonstrate that biometric, microstructural, and high-resolution trace element studies in oyster shells can provide information about contaminants and seasonal variations in the estuarine environment.  相似文献   
3.
Shallow lakes in semi-arid environments are very sensitive to hydrological alterations associated with climate change. Their shorelines and geometry can change according to water level fluctuations. Gallocanta Lake (NE Spain) is a typical example of such lacustrine conditions because it is exposed to strong winds parallel to its elongation axis and is located in a semi-arid Mediterranean environment. In this work, a high-resolution digital elevation model (DEM) of the area is used to compare the distribution of coastal forms (beaches, barrier islands, deltas, lagoons, etc.) with the frequency at which different water levels are attained. As a result, a clear relationship is obtained between presently active forms and the water levels most frequently reached in the lake. It is deduced that, once formed, the surrounding coastal plains related to these coastal forms control the permanence of water around a given height interval, favouring the development of these morphologies, in a positive feedback mechanism only broken by subsequent climate warming and lake water lowering. The hydrodynamic conditions responsible for activating the coastal forms have been analysed by applying a mathematical model of wind-driven currents in the lake that predicts the present erosional/progradational trends associated with them. The combination of the different results obtained was used to generate a synthetic map of active coastal processes and trends along the lake shore during high water episodes, with two versions according to the two dominant wind scenarios in the region. The distribution of erosion/sedimentation trends along the lake shores has helped to propose the existence of longitudinal littoral cells, each one recording different shoreline trend (retreat, progradation, and stability), depending on the prevailing wind scenario. This synthetic scheme can be useful for predicting the eco-morphological trends of the lake shore and adapting the present management practices in this protected area accordingly.  相似文献   
4.
Analysis of the microfaunas (foraminifera, ostracods) and the stable isotope values (δ13C, δ18O) of the Leioa section, as representative of the deep Basque Basin, has allowed us to propose a detailed palaeoenvironmental reconstruction of this region during the Cenomanian, as well as to register global chronostratigraphic reference levels to facilitate interregional correlations. During the Cenomanian, part of the basin, the Plentzia Trough, was occupied by intermediate water masses, as deduced by the relative percentages of planktonic (Rotalipora) and benthonic foraminifera. A noticeable change is observed at the middle-late Cenomanian transition: the replacement of the dominance of keeled (rota-liporids) by incipiently-keeled (dicarinellids, praeglobotruncanids) planktonic foraminifera, indicative of the new influence of the upper intermediate waters. The temporary effect of shallow waters is deduced in one interval of the latest early Cenomanian and two more of the middle Cenomanian, as indicated by the dominance of globular planktonic foraminifera (hedbergellids). These water masses were moderately to strongly hypoxic (<4 to <2 ml/l of disolved oxygen) after the ostracod platycopid signal and benthonic foraminiferal hypoxic indicators. The dysaerobia may have been particulary strong (almost anoxia?) during part of the middle Cenomanian. Micronutrient availability was also restricted during several intervals of the middle Cenomanian, as indicated by the sudden decrease in the species diversity of the calcitic benthonics during the period when increased trends of the δ13C isotopic signals are observed. The combination of both hypoxia and nutrient depletion produced drastic changes in the microfaunal assemblages, with emigrations and local extinctions, showing benthonic perturbations from the time indicated by the base of theRotalipora reicheliZone onwards. From the beginning until the end of the middle Cenomanian, eleven of these perturbations are recorded as regional bioevents, using as bioevent-markers, intervals where microfauna was absent (including benthic-free intervals, B-FI; benthonic calcitic-free intervals, BC-FI; and ostracod-free intervals, O-FI). These changes led to the renewal of the microfaunas; benthonic foraminifera renewed their specific stocks during the early to early middle Cenomanian, with planktonic foraminifera and ostracods undergoing renewal at the end of the middle Cenomanian. Isotope values of δ18O and δ13C are consistent with the palaeoenvironmental changes detected by the microfaunas; their maximum and minimum shifts coincide with the bioevents. The double-peaked positive shift of δ13C for the mid-Cenomanian of northwest Europe (Jenkynset al., 1994; Paulet al., 1994a) has been recognized in this series of the Basque Basin. The palaeoenvironmental perturbations deduced in the Cenomanian of the Leioa section are attributed essentially to palaeoceanographic changes, where intermediate water masses profoundly influenced the planktonic and benthonic ecosystems. The influence of other local causes, such as volcanic activity at that time, or tectonics between the Iberian and European plates, are more difficult to prove. Several of the bioevents defined in the middle Cenomanian of this basin could probably be global in nature, and thus may be useful for establishing interregional correlations.  相似文献   
5.
Tritium is a short-lived radioactive isotope (T 1/2=12.33 yr) produced naturally in the atmosphere by cosmic radiation but also released into the atmosphere and hydrosphere by nuclear activities (nuclear power stations, radioactive waste disposal). Tritium of natural or anthropogenic origin may end up in soils through tritiated rain, and may eventually appear in groundwater. Tritium in groundwater can be re-emitted to the atmosphere through the vadose zone. The tritium concentration in soil varies sharply close to the ground surface and is very sensitive to many interrelated factors like rainfall amount, evapotranspiration rate, rooting depth and water table position, rendering the modeling a rather complex task. Among many existing codes, SOLVEG is a one-dimensional numerical model to simulate multiphase transport through the unsaturated zone. Processes include tritium diffusion in both, gas and liquid phase, advection and dispersion for tritium in liquid phase, radioactive decay and equilibrium partitioning between liquid and gas phase. For its application with bare or vegetated (perennial vegetation or crops) soil surfaces and shallow or deep groundwater levels (contaminated or non-contaminated aquifer) the model has been adapted in order to include ground cover, root growth and root water uptake. The current work describes the approach and results of the modeling of a tracer test with tritiated water (7.3×108 Bq m−3) in a cultivated soil with an underlying 14 m deep unsaturated zone (non-contaminated). According to the simulation results, the soil’s natural attenuation process is governed by evapotranspiration and tritium re-emission. The latter process is due to a tritium concentration gradient between soil air and an atmospheric boundary layer at the soil surface. Re-emission generally occurs during night time, since at day time it is coupled with the evaporation process. Evapotranspiration and re-emission removed considerable quantities of tritium and limited penetration of surface-applied tritiated water in the vadose zone to no more than ∼1–2 m. After a period of 15 months tritium background concentration in soil was attained.  相似文献   
6.
Quartz geodes and nodular chert have been found within middle–upper Campanian carbonate sediments from the Laño and Tubilla del Agua sections of the Basque‐Cantabrian Basin, northern Spain. The morphology of geodes together with the presence of anhydrite laths included in megaquartz crystals and spherulitic fibrous quartz (quartzine‐lutecite), suggest an origin from previous anhydrite nodules. The anhydrite nodules at Laño were produced by the percolation of marine brines, during a period corresponding to a sedimentary gap, with δ34S and δ18O mean values of 18.8‰ and 13.6‰ respectively, consistent with Upper Cretaceous seawater sulphate values. Higher δ34S and δ18O mean values of 21.2‰ and 21.8‰ recorded in the Tubilla del Agua section are interpreted as being due to a partial bacterial sulphate reduction process in a more restricted marine environment. The idea that sulphates may have originated from the leaching of previously deposited Keuper sulphate evaporites with subsequent precipitation as anhydrite, is rejected because the δ34S, δ18O and 87Sr/86Sr values of anhydrite laths observed at both the Tubilla del Agua and Laño sections suggest an origin from younger marine brines. Later calcite replacement and precipitation of geode‐filling calcite is recorded in both sections, with δ13C and δ18O values indicating the participation of meteoric waters. Synsedimentary activity of the Peñacerrada diapir, which lies close to the Laño section, played a significant role in the local shallowing of the basin and the formation of quartz geodes. In contrast, eustatic shallowing of the inner marine series of the Tubilla del Agua section led to the generation of morphologically similar quartz geodes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
7.
One of the most important issues for water resource management is developing strategies for groundwater modelling that are adaptable to data scarcity. These strategies are particularly important in arid and semi‐arid areas where access to data is poor and data collection is difficult, such as the Lake Chad Basin in Africa. In the present study, we establish a numerical groundwater flow model and evaluate the effects of dry and wet periods on groundwater recharge in the Chari–Logone area (96 000 km2) of the Lake Chad Basin. Boundary conditions, flow direction, sources, and sinks for the Chari–Logone local model were obtained by revising and remodelling the Lake Chad Basin regional hydrogeological model (508 400 km2) developed by the BRGM (Bureau de Recherches Géologiques et Minières) in the 1990s. The simulated aquifer water level showed good agreement with observed levels. Aquifer recharge is primarily determined by river–aquifer interactions and mostly occurs in the southern section of the study area. In wet years, groundwater recharge also occurs in the N'Djamena area. The approach we adopted provided relevant results and was useful as an initial step in more detailed modelling of the area. It also proved to be a useful method for groundwater modelling in large semi‐arid and arid regions where available data are scarce. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
8.
Aquifer natural recharge estimations are a prerequisite for understanding hydrologic systems and sustainable water resources management. As meteorological data series collection is difficult in arid and semiarid areas, satellite products have recently become an alternative for water resources studies. A daily groundwater recharge estimation in the NW part of the Lake Chad Basin, using a soil–plant-atmosphere model (VisualBALAN), from ground- and satellite-based meteorological input dataset for non-irrigated and irrigated land and for the 2005–2014 period is presented. Average annual values were 284 mm and 30°C for precipitation and temperature in ground-based gauge stations. For the satellite-model-based Lake Chad Basin Flood and Drought Monitor System platform (CHADFDM), average annual precipitation and temperature were 417 mm and 29°C, respectively. Uncertainties derived from satellite data measurement could account for the rainfall difference. The estimated mean annual aquifer recharge was always higher from satellite- than ground-based data, with differences up to 46% for dryland and 23% in irrigated areas. Recharge response to rainfall events was very variable and results were very sensitive to: wilting point, field capacity and curve number for runoff estimation. Obtained results provide plausible recharge values beyond the uncertainty related to data input and modelling approach. This work prevents on the important deviations in recharge estimation from weighted-ensemble satellite-based data, informing in decision making to both stakeholders and policy makers.  相似文献   
9.
A detailed chemical study of groundwater was carried out to elucidate the processes controlling the oxidation and dissolution of sulphide minerals at two massive sulphide deposits in the Iberian Pyrite Belt (IPB), i.e. the mined La Zarza deposit and the unmined Masa Valverde deposit. It was found that major-element compositions varied according to the hydrological regime, La Zarza being in a relatively high area with groundwater recharge (and disturbance due to the human factor) and Masa Valverde being in a relatively low area with groundwater discharge. The variations mainly concern pH, Eh, SO4 and Na concentrations. Metal concentrations were determined (a) by ICP-MS after filtration, and (b) in some cases by voltammetric measurement of Cu, Pb, Zn, Cd and Mn using the Voltammetric In situ Profiling (VIP) System, which allows detection of only the mobile fractions of trace elements (i.e., free metal ions and small labile complexes a few nanometers in size). If one compares the results obtained by each of the two methods, it would appear that the groundwater shows significant enhancement of metal solubility through complexing with organic matter and/or adsorption onto colloids and/or small particles. In areas of sulphide oxidation, however, this solubility enhancement decreases according to Cu>Zn>Cd>Pb. Under very low redox conditions, the attained metal concentrations can be several orders of magnitude (up to 108–109 for Cu and 102–103 for Pb) larger than those expected from equilibrium with respect to sulphide minerals as calculated with the EQ3NR geochemical code; Zn concentrations, however, are close to equilibrium with respect to sphalerite. The implication of these results is discussed with respect both to mineral exploration and to environmental issues.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号