首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   7篇
测绘学   1篇
大气科学   1篇
地球物理   5篇
地质学   26篇
海洋学   2篇
天文学   33篇
自然地理   2篇
  2024年   1篇
  2022年   1篇
  2020年   3篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   6篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   4篇
  2011年   7篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   5篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1996年   1篇
  1993年   2篇
  1991年   1篇
排序方式: 共有70条查询结果,搜索用时 62 毫秒
1.
TAM5.29 is an extraterrestrial dust grain, collected on the Transantarctic Mountains (TAM). Its mineralogy is dominated by an Fe‐rich matrix composed of platy fayalitic olivines and clasts of andradite surrounded by diopside‐jarosite mantles; chondrules are absent. TAM5.29 records a complex geological history with evidence of extensive thermal metamorphism in the presence of fluids at T < 300 °C. Alteration was terminated by an impact, resulting in shock melt veins and compaction‐orientated foliation of olivine. A second episode of alteration at lower temperatures (<100 °C) occurred postimpact and is either parent body or terrestrial in origin and resulted in the formation of iddingsite. The lack of chondrules is explained by random subsampling of the parent body, with TAM5.29 representing a matrix‐only fragment. On the basis of bulk chemical composition, mineralogy, and geological history TAM5.29 demonstrates affinities to the CVox group with a mineralogical assemblage in between the Allende‐like and Bali‐like subgroups (CVoxA and TAM5.29 are rich in andradite, magnetite, and FeNiS, but CVoxA lacks hydrated minerals, common in TAM5.29; conversely, CVoxB are rich in hydrated phyllosilicates but contain almost pure fayalite, not found in TAM5.29). In addition, TAM5.29 has a slightly different metasomatic history, in between the oxidized and reduced CV metamorphic grades while also recording higher oxidizing conditions as compared to the known CV chondrites. This study represents the third CV‐like cosmic dust particle, containing a unique composition, mineralogy, and fabric, demonstrating variation in the thermal metamorphic history of the CV parent body(‐ies).  相似文献   
2.
Pyroxenes of pigeonitic and augitic bulk compositions in H3–4 chondritic meteorites commonly exhibit sigmoidal precipitates, rather than the elsewhere common lamellar associations. Most often, submicrometric sigmoids with calcic clinopyroxene composition occur within clinoenstatite; more rarely, clinoenstatite sigmoids occur within calcic clinopyroxene. The sigmoids appear as 001 terminated lamellae, with terminations rotated in opposite directions towards the 100 orientation. Pre-exsolution pigeonite and augite formed at temperatures higher than 980 °C, whereas sigmoidal exsolution occurred between 990 and 830 °C. Local anomalous lattice parameters determined by electron diffraction suggest that lattice parameters are most strained where the exsolution texture is most poorly defined. Shear strain occurs during exsolution due to mismatching lattice parameters and variable angles. In response to shear stress, the lamellae relax and assume sigmoidal strained morphologies. Sigmoidal exsolution is strongly controlled by (100) orthoenstatite stacking faults that possibly trigger exsolution.  相似文献   
3.
4.
Scholars have long discussed the introduction and spread of iron metallurgy in different civilizations. The sporadic use of iron has been reported in the Eastern Mediterranean area from the late Neolithic period to the Bronze Age. Despite the rare existence of smelted iron, it is generally assumed that early iron objects were produced from meteoritic iron. Nevertheless, the methods of working the metal, its use, and diffusion are contentious issues compromised by lack of detailed analysis. Since its discovery in 1925, the meteoritic origin of the iron dagger blade from the sarcophagus of the ancient Egyptian King Tutankhamun (14th C. BCE) has been the subject of debate and previous analyses yielded controversial results. We show that the composition of the blade (Fe plus 10.8 wt% Ni and 0.58 wt% Co), accurately determined through portable x‐ray fluorescence spectrometry, strongly supports its meteoritic origin. In agreement with recent results of metallographic analysis of ancient iron artifacts from Gerzeh, our study confirms that ancient Egyptians attributed great value to meteoritic iron for the production of precious objects. Moreover, the high manufacturing quality of Tutankhamun's dagger blade, in comparison with other simple‐shaped meteoritic iron artifacts, suggests a significant mastery of ironworking in Tutankhamun's time.  相似文献   
5.
Being a potential preferential way for water to flow, interfaces between host rock and engineered barriers are critical in the design of deep radioactive waste repositories. In case of cementitious materials, presence of water may lead to long term degradation by leaching. Such a phenomenon could impede the integrity of the confinement by its effect on the hydro-mechanical properties of the interface. Recent experimental results from Buzzi et al. [8] have evidenced some effects of leaching on the hydro-mechanical behavior of rock–concrete interfaces for one leaching time. This paper intends to investigate the influence of leaching on the mechanical behavior of rock–mortar interfaces by means of numerical simulations. These latter will be run for several leaching times to produce a better understanding of the phenomenon. For this purpose, a DEM approach has been developed to simulate the increase of the macro-porosity resulting from the leaching process. The implementation of the approach is first discussed. Then direct shear tests under constant normal stress are performed on a simple interface geometry and on a natural interface geometry. The results after Buzzi et al. [8] are corroborated by this research.  相似文献   
6.
Cosmogenic He, Ne, and Ar as well as the radionuclides 10Be, 26Al, 36Cl, 41Ca, 53Mn, and 60Fe have been determined on samples from the Gebel Kamil ungrouped Ni‐rich iron meteorite by noble gas mass spectrometry and accelerator mass spectrometry (AMS), respectively. The meteorite is associated with the Kamil crater in southern Egypt, which is about 45 m in diameter. Samples originate from an individual large fragment (“Individual”) as well as from shrapnel. Concentrations of all cosmogenic nuclides—stable and radioactive—are lower by a factor 3–4 in the shrapnel samples than in the Individual. Assuming negligible 36Cl decay during terrestrial residence (indicated by the young crater age <5000 years; Folco et al. 2011 ), data are consistent with a simple exposure history and a 36Cl‐36Ar cosmic ray exposure age (CRE) of approximately (366 ± 18) Ma (systematic errors not included). Both noble gases and radionuclides point to a pre‐atmospheric radius >85 cm, i.e., a pre‐atmospheric mass >20 tons, with a preferred radius of 115–120 cm (50–60 tons). The analyzed samples came from a depth of approximately 20 cm (Individual) and approximately 50–80 cm (shrapnel). The size of the Gebel Kamil meteoroid determined in this work is close to estimates based on impact cratering models combined with expectations for ablation during passage through the atmosphere (Folco et al. 2010 , 2011 ).  相似文献   
7.
Abstract– We detail the Kamil crater (Egypt) structure and refine the impact scenario, based on the geological and geophysical data collected during our first expedition in February 2010. Kamil Crater is a model for terrestrial small‐scale hypervelocity impact craters. It is an exceptionally well‐preserved, simple crater with a diameter of 45 m, depth of 10 m, and rayed pattern of bright ejecta. It occurs in a simple geological context: flat, rocky desert surface, and target rocks comprising subhorizontally layered sandstones. The high depth‐to‐diameter ratio of the transient crater, its concave, yet asymmetric, bottom, and the fact that Kamil Crater is not part of a crater field confirm that it formed by the impact of a single iron mass (or a tight cluster of fragments) that fragmented upon hypervelocity impact with the ground. The circular crater shape and asymmetries in ejecta and shrapnel distributions coherently indicate a direction of incidence from the NW and an impact angle of approximately 30 to 45°. Newly identified asymmetries, including the off‐center bottom of the transient crater floor downrange, maximum overturning of target rocks along the impact direction, and lower crater rim elevation downrange, may be diagnostic of oblique impacts in well‐preserved craters. Geomagnetic data reveal no buried individual impactor masses >100 kg and suggest that the total mass of the buried shrapnel >100 g is approximately 1050–1700 kg. Based on this mass value plus that of shrapnel >10 g identified earlier on the surface during systematic search, the new estimate of the minimum projectile mass is approximately 5 t.  相似文献   
8.
In this paper we present a crater age determination of several terrains associated with the Raditladi and Rachmaninoff basins. These basins were discovered during the first and third MESSENGER flybys of Mercury, respectively. One of the most interesting features of both basins is their relatively fresh appearance. The young age of both basins is confirmed by our analysis on the basis of age determination via crater chronology. The derived Rachmaninoff and Raditladi basin model ages are about 3.6 Ga and 1.1 Ga, respectively. Moreover, we also constrain the age of the smooth plains within the basins' floors. This analysis shows that Mercury had volcanic activity until recent time, possibly to about 1 Ga or less. We find that some of the crater size-frequency distributions investigated suggest the presence of a layered target. Therefore, within this work we address the importance of considering terrain parameters, as geo-mechanical properties and layering, into the process of age determination. We also comment on the likelihood of the availability of impactors able to form basins with the sizes of Rachmaninoff and Raditladi in relatively recent times.  相似文献   
9.
Developing an accurate representation of the rock mass fabric is a key element in rock fall hazard analysis. The orientation, persistence and density of fractures control the volume and shape of unstable blocks or compartments. In this study, the discrete fracture modelling technique and digital photogrammetry were used to accurately depict the fabric. A volume distribution of unstable blocks was derived combining polyhedral modelling and kinematic analyses. For each block size, probabilities of failure and probabilities of propagation were calculated. A complete energy distribution was obtained by considering, for each block size, its occurrence in the rock mass, its probability of falling, its probability to reach a given location, and the resulting distribution of energies at each location. This distribution was then used with an energy–frequency diagram to assess the hazard.  相似文献   
10.
Most of the recent research on rockfall and the development of protective systems, such as flexible rockfall barriers, have been focused on medium to high levels of impacting energy. However, in many regions of the world, the rockfall hazard involves low levels of energy. This is particularly the case in New South Wales, Australia, because of the nature of the geological environments. The state Road and Traffic Authority (RTA) has designed various types of rockfall barriers, including some of low capacity, i.e. 35 kJ. The latter were tested indoors using a pendulum equipped with an automatic block release mechanism triggered by an optical beam. Another three systems were also tested, including two products designed by rockfall specialised companies and one modification of the initial design of the RTA. The research focused on the influence of the system’s stiffness on the transmission of load to components of the barrier such as posts and cables. Not surprisingly, the more compliant the system, the less loaded the cables and posts. It was also found that removing the intermediate cables and placing the mesh downslope could reduce the stiffness of the system designed by the RTA. The paper concludes with some multi-scale considerations on the capacity of a barrier to absorb the energy based on experimental evidence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号