首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   10篇
测绘学   8篇
大气科学   21篇
地球物理   39篇
地质学   62篇
海洋学   27篇
天文学   26篇
自然地理   28篇
  2024年   2篇
  2023年   3篇
  2022年   6篇
  2021年   8篇
  2020年   16篇
  2019年   6篇
  2018年   9篇
  2017年   8篇
  2016年   13篇
  2015年   6篇
  2014年   11篇
  2013年   9篇
  2012年   14篇
  2011年   12篇
  2010年   15篇
  2009年   13篇
  2008年   13篇
  2007年   7篇
  2006年   6篇
  2005年   3篇
  2004年   7篇
  2003年   9篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1997年   3篇
  1983年   1篇
排序方式: 共有211条查询结果,搜索用时 15 毫秒
1.
We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect each giant planet subnebula to be composed of an optically thick (given gaseous opacity) inner region inside of the planet’s centrifugal radius (where the specific angular momentum of the collapsing giant planet gaseous envelope achieves centrifugal balance, located at rCJ ∼ 15RJ for Jupiter and rCS ∼ 22RS for Saturn) and an optically thin, extended outer disk out to a fraction of the planet’s Roche-lobe (RH), which we choose to be ∼RH/5 (located at ∼150 RJ near the inner irregular satellites for Jupiter, and ∼200RS near Phoebe for Saturn). This places Titan and Ganymede in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted by the protoplanet. The outer disk may result from the nebula gas flowing into the protoplanet during the time of giant planet gap-opening (or cessation of gas accretion). For the sake of specificity, we use a solar composition “minimum mass” model to constrain the gas densities of the inner and outer disks of Jupiter and Saturn (and also Uranus). Our model has Ganymede at a subnebula temperature of ∼250 K and Titan at ∼100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 and 90 K, respectively.Our model has Callisto forming in a time scale ∼106 years, Iapetus in 106-107 years, Ganymede in 103-104 years, and Titan in 104-105 years. Callisto takes much longer to form than Ganymede because it draws materials from the extended, low density portion of the disk; its accretion time scale is set by the inward drift times of satellitesimals with sizes 300-500 km from distances ∼100RJ. This accretion history may be consistent with a partially differentiated Callisto with a ∼300-km clean ice outer shell overlying a mixed ice and rock-metal interior as suggested by Anderson et al. (2001), which may explain the Ganymede-Callisto dichotomy without resorting to fine-tuning poorly known model parameters. It is also possible that particulate matter coupled to the high specific angular momentum gas flowing through the gap after giant planet gap-opening, capture of heliocentric planetesimals by the extended gas disk, or ablation of planetesimals passing through the disk contributes to the solid content of the disk and lengthens the time scale for Callisto’s formation. Furthermore, this model has Hyperion forming just outside Saturn’s centrifugal radius, captured into resonance by proto-Titan in the presence of a strong gas density gradient as proposed by Lee and Peale (2000). While Titan may have taken significantly longer to form than Ganymede, it still formed fast enough that we would expect it to be fully differentiated. In this sense, it is more like Ganymede than like Callisto (Saturn’s analog of Callisto, we expect, is Iapetus). An alternative starved disk model whose satellite accretion time scale for all the regular satellites is set by the feeding of planetesimals or gas from the planet’s Roche-lobe after gap-opening is likely to imply a long accretion time scale for Titan with small quantities of NH3 present, leading to a partially differentiated (Callisto-like) Titan. The Cassini mission may resolve this issue conclusively. We briefly discuss the retention of elements more volatile than H2O as well as other issues that may help to test our model.  相似文献   
2.
The impact of volcanic eruptions on forest ecosystems can be investigated using dendrochronological records. While long-range effects are usually mediated by decreased air temperatures, resulting in frost rings or reduced maximum latewood density, local effects include abrupt suppression of radial growth, occasionally followed by greater than normal growth rates. Annual rings in Mexican mountain pine (Pinus hartwegii Lindl.) on Nevado de Colima, at the western end of the Mexican Neovolcanic Belt, indicate extremely low growth in 1913 and 1914, following the January 1913 Plinian eruption of Volcán de Fuego, 7.7 km to the south. That event, which is listed among the largest explosive eruptions since A.D. 1500, produced ashflow deposits up to 40 m thick and blanketed our study area on Nevado de Colima with a tephra fallout 15–30 cm deep. Radial growth reduction in 1913–14 was ≥30% in 73% of the sampled trees. We geostatistically investigated the ecological impact of the eruption by mapping the decrease in xylem increment and found no evidence of a spatial structure in growth reduction. Little information has been available to date on forest species as biological archives of past environments in the North American tropics, yet this historical case study suggests that treeline tropical sites hold valuable records of prehistoric phenomena, including volcanic eruptions.  相似文献   
3.
We use high resolution Monte Carlo simulations to study the dispersive mixing in two-phase, immiscible, porous media flow that results from the interaction of the nonlinearities in the flow equations with geologic heterogeneity. Our numerical experiments show that distinct dispersive regimes occur depending on the relative strength of nonlinearity and heterogeneity. In particular, for a given degree of multiscale heterogeneity, controlled by the Hurst exponent which characterizes the underlying stochastic model for the heterogeneity, linear and nonlinear flows are essentially identical in their degree of dispersion, if the heterogeneity is strong enough. As the heterogeneity weakens, the dispersion rates cross over from those of linear heterogeneous flows to those typical of nonlinear homogeneous flows.  相似文献   
4.
The Holocene fire regime is thought to have had a key role in deforestation and shrubland expansion in Galicia (NW Spain) but the contribution of past societies to vegetation burning remains poorly understood. This may be, in part, due to the fact that detailed fire records from areas in close proximity to archaeological sites are scarce. To fill this gap, we performed charcoal analysis in five colluvial soils from an archaeological area (Campo Lameiro) and compared the results to earlier studies from this area and palaeo-ecological literature from NW Spain. This analysis allowed for the reconstruction of the vegetation and fire dynamics in the area during the last ca 11 000 yrs. In the Early Holocene, Fabaceae and Betula sp. were dominant in the charcoal record. Quercus sp. started to replace these species around 10 000 cal BP, forming a deciduous forest that prevailed during the Holocene Thermal Maximum until ~5500 cal BP. Following that, several cycles of potentially fire-induced forest regression with subsequent incomplete recovery eventually led to the formation of an open landscape dominated by shrubs (Erica sp. and Fabaceae). Major episodes of forest regression were (1) ~5500–5000 cal BP, which marks the mid-Holocene cooling after the Holocene Thermal Maximum, but also the period during which agropastoral activities in NW Spain became widespread, and (2) ~2000–1500 cal BP, which corresponds roughly to the end of the Roman Warm Period and the transition from the Roman to the Germanic period. The low degree of chronological precision, which is inherent in fire history reconstructions from colluvial soils, made it impossible to distinguish climatic from human-induced fires. Nonetheless, the abundance of synanthropic pollen indicators (e.g. Plantago lanceolata and Urtica dioica) since at least ~6000 cal BP strongly suggests that humans used fire to generate and maintain pasture.  相似文献   
5.
We explored the submarine portions of the Enriquillo–Plantain Garden Fault zone (EPGFZ) and the Septentrional–Oriente Fault zone (SOFZ) along the Northern Caribbean plate boundary using high‐resolution multibeam echo‐sounding and shallow seismic reflection. The bathymetric data shed light on poorly documented or previously unknown submarine fault zones running over 200 km between Haiti and Jamaica (EPGFZ) and 300 km between the Dominican Republic and Cuba (SOFZ). The primary plate‐boundary structures are a series of strike‐slip fault segments associated with pressure ridges, restraining bends, step overs and dogleg offsets indicating very active tectonics. Several distinct segments 50–100 km long cut across pre‐existing structures inherited from former tectonic regimes or bypass recent morphologies formed under the current strike‐slip regime. Along the most recent trace of the SOFZ, we measured a strike‐slip offset of 16.5 km, which indicates steady activity for the past ~1.8 Ma if its current GPS‐derived motion of 9.8 ± 2 mm a?1 has remained stable during the entire Quaternary.  相似文献   
6.
The carbon flux through major phytoplankton groups, defined by their pigment markers, was estimated in two contrasting conditions of the Northwestern Mediterranean open ocean ecosystem: the spring bloom and post-bloom situations (hereafter Bloom and Post-bloom, respectively). During Bloom, surface chlorophyll a (Chl a) concentration was higher and dominated by diatoms (53% of Chl a), while during Post-bloom Synechococcus (42%) and Prymnesiophyceae (29%) became dominant. The seawater dilution technique, coupled to high pressure liquid chromatography (HPLC) analysis of pigments and flow cytometry (FCM), was used to estimate growth and grazing rates of major phytoplankton groups in surface waters. Estimated growth rates were corrected for photoacclimation based on FCM-detected changes in red fluorescence per cell. Given the 30% average decrease in the pigment content per cell between the beginning and the end of the incubations, overlooking photoacclimation would have resulted in a 0.40 d?1 underestimation of phytoplankton growth rates. Corrected average growth rates (μo) were 0.90±0.20 (SD) and 0.40±0.14 d?1 for Bloom and Post-bloom phytoplankton, respectively. Diatoms, Cryptophyceae and Synechococcus were identified as fast-growing groups and Prymnesiophyceae and Prasinophyceae as slow-growing groups across Bloom and Post-bloom conditions. The higher growth rate during Bloom was due to dominance of phytoplankton groups with higher growth rates than those dominating in Post-bloom. Average grazing rates (m) were 0.58±0.20 d?1 (SD) and 0.31±0.07 d?1. The proportion of phytoplankton growth consumed by microzooplankton grazing (m/μo) tended to be lower in Bloom (0.69±0.34) than in Post-bloom (0.80±0.08). The intensity of nutrient limitation experienced by phytoplankton indicated by μo/μn (where μn is the nutrient-amended growth rate), was similar during Bloom (0.78) and Post-bloom (0.73). Primary production from surface water (PP) was estimated with 14C incubations. A combination of PP and Chl a synthesis rate yielded C/Chl a ratios of 34±21 and 168±75 (g:g) for Bloom and Post-bloom, respectively. Transformation of group-specific Chl a fluxes into carbon equivalents confirmed the dominant role of diatoms during Bloom and Synechococcus and Prymnesiophyceae during Post-bloom.  相似文献   
7.
The town of Santa Teresa (Cusco Region, Peru) has been affected by several large debris-flow events in the recent past, which destroyed parts of the town and resulted in a resettlement of the municipality. Here, we present a risk analysis and a risk management strategy for debris-flows and glacier lake outbursts in the Sacsara catchment. Data scarcity and limited understanding of both physical and social processes impede a full quantitative risk assessment. Therefore, a bottom-up approach is chosen in order to establish an integrated risk management strategy that is robust against uncertainties in the risk analysis. With the Rapid Mass Movement Simulation (RAMMS) model, a reconstruction of a major event from 1998 in the Sacsara catchment is calculated, including a sensitivity analysis for various model parameters. Based on the simulation results, potential future debris-flows scenarios of different magnitudes, including outbursts of two glacier lakes, are modeled for assessing the hazard. For the local communities in the catchment, the hazard assessment is complemented by the analysis of high-resolution satellite imagery and fieldwork. Physical, social, economic, and institutional vulnerability are considered for the vulnerability assessment, and risk is eventually evaluated by crossing the local hazard maps with the vulnerability. Based on this risk analysis, a risk management strategy is developed, consisting of three complementing elements: (i) standardized risk sheets for the communities; (ii) activities with the local population and authorities to increase social and institutional preparedness; and (iii) a simple Early Warning System. By combining scientific, technical, and social aspects, this work is an example of a framework for an integrated risk management strategy in a data scarce, remote mountain catchment in a developing country.  相似文献   
8.
Bogotá is located in the central Andean region of Colombia, which is frequently affected by landslide processes. These processes are mostly triggered during the rainy season in the city. This fact remarks the importance of determining what rain-derived parameters (e.g. intensity, antecedent rain, daily rain) are better related with the occurrence of landslides. For this purpose, the linear discriminant analysis (LDA), a technique derived from multivariate statistics, was used. The application of this type of analysis led to obtain simple mathematical functions that represent the probability of occurrence of landslides in Bogotá. The functions also allow to identify the most relevant variables derived from records of rainfall linked to the generation of landslides. A proof of concept using the proposed methodology was done using historic rainfall data from a 9-km2 area of homogenous climatology and geomorphology in the south part of Bogotá. Landslides needed to be grouped for the LDA. Each one of these grouping categories represents landslides that occurred in similar geomorphologic conditions. Another set of events with no landslides was generated synthetically. Results of the proof of concept show that rainfall parameters such as normalized rainfall intensity I MAP, normalized daily rainfall R MAP and rainy-days normal RDN have the best statistical correlation with the landslides observed in the zone of analysis.  相似文献   
9.
Natural Hazards - Chilean geography exposes the country to high-level risks such as earthquakes and tsunamis. The disasters of 1930, 1960, 2010, and 2014 testify to the continuous link between...  相似文献   
10.

The volcanic rocks of the Colíder and Roosevelt formations are extensively exposed in the south-central portion of the Amazonian Craton where effusive and pyroclastic rocks have been mapped. Both units, topped by chemical sediments and oceanic facies as rhyolite and andesite lavas, rhyodacite, and porphyritic dacite, with frequent intercalations of pyroclastic and epiclastic deposits. Whole-rock geochemistry for 55 samples of rhyolitic to andesitic composition suggests the involvement of fertile mantle-derived components with E-MORB to OIB compositions. The analyzed rocks display calc-alkaline to shoshonitic affinity consistent with generation related to an active continental margin. The whole-rock Sm-Nd isotope data from selected felsic volcanic rocks of the Colíder and Roosevelt formations yield negative initial εNd values between –3 and –9, indicating the predominantly crustal nature of the parental magmas with early Archean to late Paleoproterozoic (ca. 2.5–2.0 Ga) depleted mantle model ages.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号