首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地质学   7篇
  2017年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Nine seismic refraction profiles were conducted and processed to study the near-surface sediments in the new urban area of Diriyah. The 2D geoseismic models illustrate two layers: a surface layer of soft sediments and weathered to hard limestone bedrock. Moreover, microtremor measurements were performed at 38 sites for 40 min using three-component seismographs and processed to assess the peak spectral amplitude and the corresponding fundamental resonance frequency. The seismic vulnerability index at each measurement site was estimated. These results correlate well with the geotechnical borehole data. The north-western zone is highly vulnerable due to the great thickness of the soft sediments.  相似文献   
2.
Seismicity of Sinai Peninsula, Egypt   总被引:1,自引:1,他引:0  
The Sinai Peninsula has a triangular shape between the African and Arabian Plates and is bounded from the western and eastern borders by the Gulf of Suez and Gulf of Aqaba–Dead Sea rift systems, respectively. It is affected by strong and destructive earthquakes (e.g., March 31, 1969 and November 22, 1995) and moderate earthquakes (m b?>?5) throughout its history. After the installation of the Egyptian National Seismic Network (ENSN), a great number of earthquakes has been recorded within and around Sinai. Consequently, the seismogenic source zones and seismotectonic behavior can be clearly identified. Available data, including both historical and instrumental (1900–1997), have been collected from national and international data centers. While the data from 1998 till December 2007 are gathered from ENSN bulletins. The seismogenic source zones that might affect Sinai Peninsula are defined more precisely in this work depending on the distribution of earthquakes, seismicity rate (a value), b value, and fault plane solution of the major earthquakes. In addition, the type of faults prevailed and characterized these zones. It is concluded that the Gulf of Aqaba zone–Dead Sea transform zone, Gulf of Suez rift zone, Cairo–Suez District zone, and Eastern Mediterranean dislocation zone represent the major effective zones for Sinai. Furthermore, there are two local seismic zones passing through Sinai contributing to the earthquake activities of Sinai, these are the Negev shear zone and Central Sinai fault (Themed fault) zone. The source parameters, a and b values, and the maximum expected moment magnitude have been determined for each of these zones. These results will contribute to a great extent in the seismic hazard assessment and risk mitigation studies for Sinai Peninsula to protect the developmental projects.  相似文献   
3.
Gulf of Aqaba is recognized as an active seismic zone where many destructive earthquakes have occurred. The estimation of source parameters and coda Q attenuation are the main target of this work. Fifty digital seismic events in eight short-period seismic stations with magnitude 2.5–5.2 are used. Most of these events occurred at hypocentral depths in the range of 7–20 km, indicating that the activity was restricted in the upper crust. Seismic moment, M o, source radius, r, and stress drop, Δσ, are estimated from P- and S-wave spectra using the Brune’s seismic source model. The average seismic moment generated by the whole sequence of events was estimated to be 4.6E?+?22 dyne/cm. The earthquakes with higher stress drop occur at 10-km depth. The scaling relation between the seismic moment and the stress drop indicates a tendency of increasing seismic moment with stress drop. The seismic moment increases with increasing the source radius. Coda waves are sensitive to changes in the subsurface due to the wide scattering effects generating these waves. Single scattering model of local earthquakes is used to the coda Q calculation. The coda with lapse times 10, 20, and 30 s at six central frequencies 1.5, 3, 6, 12, 18, 24 Hz are calculated. The Q c values are frequency dependent in the range 1–25 Hz, and are approximated by a least squares fit to the power law [ $ {Q_c}(f) = {Q_o}{(f/{f_o})^\eta } $ ]. The average of Q c values increases from 53?±?10 at 1.5 Hz to 700?±?120 at 24 Hz. The average of Q o values ranges from 13?±?1 at 1.5 Hz to 39?±?4 at 24 Hz. The frequency exponent parameter η ranges between 1.3?±?0.008 and 0.9?±?0.001.  相似文献   
4.
Recent and paleo seismicity indicate that moderate seismic activity is relatively large for Aswan area. This is a warning on the possibility of occurrence of earthquakes in the future too. No strong motion records are available in Aswan area for engineers to rely upon. Consequently, the seismological modeling is an alternative approach till sufficient instrumental records around Aswan become available. In the present study, we have developed new ground motion attenuation relationship for events spanning 4.0?? M w?≤?7.0 and distance to the surface projection of the fault up to 100 km for Aswan based on a statistically simulated seismological model. We generated suites of ground motion time histories using stochastic technique. The ground motion attenuation relation describes the dependence of the strength of the ground motions on the earthquake magnitude and distance from the earthquake. The proposed equation for peak ground acceleration (PGA) for the bed rock is in the form of: $ {\mathbf{log}}{\text{ }}\left( {{\mathbf{PGA}}/{\mathbf{gal}}} \right){\text{ }} = {\mathbf{1}}.{\mathbf{24}} + {\mathbf{0}}.{\mathbf{358}}{M_{\mathbf{w}}} - {\text{ }}{\mathbf{log}}\left( {\mathbf{R}} \right){\text{ }}-{\text{ }}{\mathbf{0}}.{\mathbf{008}}{\text{ }}{\mathbf{R}}{\text{ }} + {\text{ }}{\mathbf{0}}.{\mathbf{22}}{\text{ }}{\mathbf{P}} $ . Where PGA is the peak ground acceleration in gal (cm/s2); Mw, its moment magnitude; R is the closest distance between the rupture projection and the site of interest; and the factor P is a dummy variable. It is observed that attenuation of strong motion in Aswan is correlated with those used before in Egypt.  相似文献   
5.
Gemsa has been chosen as the site for one of a new generation of power stations along the south-western margin of the Gulf of Suez. This site has been affected by a number of destructive earthquakes (Mw> 5), in addition to large number of earthquakes with magnitudes of less than 5. In this study seismic activities in the region were collected and re-evaluated, and the main earthquake prone zones were identified. It is indicated that this site is affected by the southern Gulf of Suez, northern Red Sea and Gulf of Aqaba source zones. The southern Gulf of Suez source zone is the nearest to the proposed site. The stochastic simulation method has been applied to estimate the Peak GroundAcceleration at the site of the proposed Gemsa power plant. It was noticed that the pseudo-spectral acceleration (PSA) reaches 175 cm/sec2 resulting from the southern Gulf of Suez seismic source. In addition, the response spectrum was conducted with a damping value of 5% of the critical damping, and the predominant period reached 0.1sec at the site. These results should be taken into consideration by civil engineers and decision-makers for designing earthquake resistant structures.  相似文献   
6.
The horizontal-to-vertical spectral ratio technique has applied to detect the fundamental frequency at the sites of ambient noise recordings for New Domiat city. Noise measurements are acquired at 90 of sites for 1?h of continuous recording with a sampling rate of 100?Hz. Then, these data are processed following to SESAME project scheme. The presence of deep sedimentary basin in the Nile Delta suggests that the site response should be important. Consequently, the obtained fundamental frequency has lower values (0.2?C0.6?Hz). However, low-frequency ground motions attenuate more gradually with distance and can excite vibrations in large engineered structures, such as tall buildings and long bridges. There is hazardous threat even from the distant earthquakes originated from Mediterranean convergence zone for the structures in the city. It is recommended that the results of this study must be taken into consideration from civil engineering point of view before construction of civil engineering structures at this part.  相似文献   
7.
Gulf of Suez consists mainly of three tectonic provinces that are separated by two accommodation zones. The southern edge of the gulf is bordered by N–S faults which mark the transition between the shallow water, Suez Basin and the deep northern Red Sea Basin. The sensitivity of coda Q measurements with respect to geological differences in the crust is demonstrated in three regions with a large variety of tectonic and geologic properties. The estimation of coda Q (Qc) is performed for 370 local earthquakes recorded at 12 digital seismic stations during the period from 2000 to 2007. The magnitudes of the earthquakes between 1.5 and ~4.5 have been used at central frequencies 1.5, 3, 6, 9, 12, 15, 18, and 24 Hz through three lapse time windows 10, 20, 30 s starting at once and twice the time of the primary S wave from the origin time. The time domain coda decay method of the single isotropic scattering model is employed to calculate frequency-dependent values of coda Q. The Qc values are frequency dependent in the range 1–25 Hz, and are approximated by a least squares fit to the power law [Qc(f) = Qo(f/fo]. The observed coda Q indicates that the area is seismically and tectonically active with high heterogeneities. The variation of the quality factor Qc has been estimated at different regions to observe the effect of different tectonic province. The average frequency-dependent estimated relations of Qc vary from 65f1.1 to 96f0.9 at 10 to 30 s window length, respectively. The decreasing value of the frequency parameter with increasing lapse time shows that the crust acquires homogeneity with depth. The variation of Qc with the variations in the geologic and tectonic properties of the crust was investigated. The frequency exponent η might be larger in active tectonic areas and smaller in more stable regions. In the northern region of the Gulf of Suez, the obtained value of η?=?0.8?±?0.011, which might indicate a low level of tectonic activity compared with η?=?1.1?±?0.005 and 1.3?±?0.009 for the central and southern regions of the gulf.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号