首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   6篇
测绘学   1篇
大气科学   2篇
地球物理   14篇
地质学   42篇
海洋学   12篇
天文学   37篇
自然地理   3篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   4篇
  2010年   7篇
  2009年   6篇
  2008年   6篇
  2007年   2篇
  2006年   2篇
  2005年   5篇
  2004年   8篇
  2003年   1篇
  2002年   3篇
  2001年   6篇
  2000年   3篇
  1999年   4篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1976年   2篇
  1974年   2篇
  1973年   1篇
排序方式: 共有111条查询结果,搜索用时 46 毫秒
1.
Electron velocity distribution functions (VDF) observed in the low speed solar wind flow are generally characterized by ‘core’ and ‘halo’ electrons. In the high speed solar wind, a third population of ‘strahl’ electrons is generally observed. New collisional models based on the solution of the Fokker-Planck equation can be used to determine the importance of the different electron populations as a function of the radial distance. Typical electron velocity distribution functions observed at 1 AU from the Sun are used as boundary conditions for the high speed solar wind and for the low speed solar wind. Taking into account the effects of external forces and Coulomb collisions with a background plasma, suprathermal tails are found to be present in the electron VDF at low altitudes in the corona when they exist at large radial distances. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
2.
3.
Solar flare observations have been performed with the multichannel L.P.S.P. experiment on board OSO-8 NASA Satellite. Simultaneous H and K Caii, h and k Mgii, L and L Hi profiles have been recorded on the plage just before the flare, during the flare onset and relaxation phases. The different behaviour of line profiles and intensities during the flare is evidenced and indicates a downward propagation with relaxation times increasing from the upper part to the lower part of the chromosphere related to line formation processes. Using the H observed profile, an upper limit of 8 × 1013 cm-3 is derived for the electron density.  相似文献   
4.
O vi ( = 1032 Å) profiles have been measured in and above a filament at the limb, previously analyzed in H i, Mg ii, Ca ii resonance lines (Vial et al., 1979). They are compared to profiles measured at the quiet Sun center and at the quiet Sun limb.Absolute intensities are found to be about 1.55 times larger than above the quiet limb at the same height (3); at the top of the prominence (15 above the limb) one finds a maximum blue shift and a minimum line width. The inferred non-thermal velocity (29 km s–1) is about the same as in cooler lines while the approaching line-of-sight velocity (8 km s–1) is lower than in Ca ii lines.The O vi profile recorded 30 above the limb outside the filament is wider (FWHM = 0.33 Å). It can be interpreted as a coronal emission of O vi ions with a temperature of about 106 K, and a non-thermal velocity (NTV) of 49 km s–1. This NTV is twice the NTV of quiet Sun center O vi profiles. Lower NTV require higher temperatures and densities (as suggested by K-coronameter measurements). Computed emission measures for this high temperature regime agree with determinations from disk intensities of euv lines.  相似文献   
5.
In isothermal models of the expanding solar corona there exists in general an exobase level where the collision mean free path becomes equal to the density scale height. At this level the hydrodynamic approximations of the transport equations fail to be justified and a kinetic approach is more appropriate. This exobase is located below the altitude of the critical point proper to the hydrodynamic solutions. The bulk velocity at the exobase is subsonic and smaller than the expansion velocity at the critical point. Therefore the transition to a supersonic solar wind velocity occurs in the collisionless ion-exosphere.  相似文献   
6.
Observations with the French (L.P.S.P.) experiment on board OSO-8 of a sunspot and nearby plage region are described. The behaviour of the emission cores of the Ca II H and K and Mg II h and k resonance lines is very similar and the correspondence in intensity between the four lines persists in all observed features. In contrast, the Lyman lines show little correlation with the other lines. Their emission regions appear broader in the spectroheliograms than the underlying sunspot structure and must not necessarily possess a counterpart in lower layers. From the central intensity of L above the umbra an electron density of 4.3 × 1010 cm-3 n e * 2.3 × 1011 cm-3 at 20 000 K is estimated.Mitteilungen aus dem Kiepenheuer-Institut Nr. 186.Stockholm Observatorium, S-13300 Saltsjöbaden, Sweden.Laboratoire de Physique Stellaire et Planétaire, CNRS, P.O. Box 10, F-91370 Verrières-le-Buisson, France.  相似文献   
7.
An 11-month observation of dissolved and particulate organic matter, chlorophyll a(Chl a), C18 Sep-Pak extractable hydrophobic dissolved organic matter (hDOM) fraction and associated dissolved trace metals (Cd, Cu, V, Co, Ni, Mo, U) was performed in the Lot–Garonne River system. This system includes the Riou Mort, the Lot River and the downstream reaches of the Garonne River and represents the fluvial transport path of trace metals between the major point source of polymetallic pollution, located in the Riou Mort watershed and the Gironde estuary. Spatial and temporal variations of dissolved and particulate organic carbon and Chl areflect the presence of different types of organic matter and their relation with the hDOM fraction. Maximum Chl a/POC ratios (up to 0.03), indicate intense phytoplankton production from March to May. In the Lot River (Temple), DOC and POC concentrations were clearly higher and mean Chl a concentration (2.8 mg g−1) was about three times higher than those of the other sites. High Chl a/POC ratios suggest high phytoplankton activity with maxima in spring and late summer. In the Riou Mort River, very high POC concentrations of up to 40 (mean: 20) occurred, whereas Chl a concentrations were relatively low indicating low phytoplankton activity. High, strongly variable DOC and POC concentrations suggest important natural (Carboniferous soils, forests) or anthropogenic (e.g., former coal mines, waste areas, agriculture, sewage) carbon sources within the small Riou Mort watershed. Despite high DOC concentrations in the Riou Mort River, hDOM metal fractions were generally lower than those at the other sites. The general order of decreasing binding strength between metals and the organic hydrophobic phase (Cu, U > Co, Ni > V, Mo > Cd) at all four sites was in good agreement with the Irving–William series of transition element affinity towards organic ligands. Accordingly, the role of the hydrophobic phase in dissolved Cd transport appeared to be negligible, whereas the hDOM–Cu fraction strongly contributed to dissolved Cu transport.  相似文献   
8.
The late Messinian mixed carbonate‐siliciclastic platforms of the Sorbas Basin, known as the Terminal Carbonate Complex, record significant changes in carbonate production and geometry. Their facies and stratigraphic architecture result from complex interactions between base‐level fluctuations, evaporite deformation/dissolution and detrital inputs. A 3D quantitative approach (with DIONISOS software) is used to explore the basin‐scale platform architecture and to quantify the carbonate production of the Terminal Carbonate Complex. The modelling strategy consists in integrating detailed 2D field‐based transects and modern carbonate system parameters (e.g. carbonate production rates, bathymetric and hydrodynamic ranges of production). This approach limits user impact and so provides more objective output results. Tests are carried out on carbonate production rates, subsidence and evaporite deformation/dissolution. Numerical modelling provides accurate predictions of geometries, facies distributions and depositional sequence thicknesses, validated by field data. Comparative statistical testing of the field transects and of the various model outputs are used to discern the relative contribution of the parameters tested to the evolution of basin filling. The 3D visualization and quantification of the main carbonate producers (ooids and microbialites) are discussed in terms of changes in base‐level and detrital supply. This study demonstrates that base‐level fluctuations have the greatest impact on the carbonate budget. Evaporite deformation/dissolution affects the type and amount of carbonate production, inducing a transition from an ooid‐ to microbialite‐dominated system and also has a major effect on stratigraphic architecture by inducing the migration of depocentres. The numerical modelling results obtained using modern carbonate system parameters could also be applied to subsurface ooid‐microbialite reservoirs, and the Terminal Carbonate Complex is a good analogue for such systems.  相似文献   
9.
Most source-to-sink studies typically focus on the dynamics of clastic sediments and consider erosion, transport and deposition of sediment particles as the sole contributors. Although often neglected, dissolved solids produced by weathering processes contribute significantly in the sedimentary dynamics of basins, supporting chemical and/or biological precipitation. Calcium ions are usually a major dissolved constituent of water drained through the watershed and may facilitate the precipitation of calcium carbonate when supersaturating conditions are reached. The high mobility of Ca2+ ions may cause outflow from an open system and consequently loss. In contrast, in closed basins, all dissolved (i.e. non-volatile) inputs converge at the lowest point of the basin. The endoreic Great Salt Lake basin constitutes an excellent natural laboratory to study the dynamics of calcium on a basin scale, from the erosion and transport through the watershed to the sink, including sedimentation in lake's waterbody. The current investigation focused on the Holocene epoch. Despite successive lake level fluctuations (amplitude around 10 m), the average water level seems to have not been affected by any significant long-term change (i.e. no increasing or decreasing trend, but fairly stable across the Holocene). Weathering of calcium-rich minerals in the watershed mobilizes Ca2+ ions that are transported by surface streams and subsurface flow to the Great Salt Lake (GSL). Monitoring data of these flows was corrected for recent anthropogenic activity (river management) and combined with direct precipitation (i.e. rain and snow) and atmospheric dust income into the lake, allowing estimating the amount of calcium delivered to the GSL. These values were then extrapolated through the Holocene period and compared to the estimated amount of calcium stored in GSL water column, porewater and sediments (using hydrochemical, mapping, coring and petrophysical estimates). The similar estimate of calcium delivered (4.88 Gt) and calcium stored (3.94 Gt) is consistent with the premise of the source-to-sink approach: a mass balance between eroded and transported compounds and the sinks. The amount of calcium deposited in the basin can therefore be predicted indirectly from the different inputs, which can be assessed with more confidence. When monitoring is unavailable (e.g. in the fossil record), the geodynamic context, the average lithology of the watershed and the bioclimatic classification of an endoreic basin are alternative properties that may be used to estimate the inputs. We show that this approach is sufficiently accurate to predict the amount of calcium captured in a basin and can be extended to the whole fossil record and inform on the storage of calcium.  相似文献   
10.
The Moselle river flows in the north-east of France, from Vosges Mountains to neighboring countries Luxembourg and Germany. One of its tributaries, the Fensch river, drains a highly industrialized watershed, strongly impacted by mining, smelting and surfacing activities. The objective of this work, part of a general research program on Moselle watershed (Zone Atelier Moselle) was to assess the impact of the polluted Fensch river on the global quality of the Moselle river. For that purpose, water, sediments and suspended particulate matter were sampled in both rivers, upstream and downstream the junction. Four main sampling campaigns were carried out, in winter during a flood event and in spring at low water level. On a first step, mineralogical analyses (XRD and FTIR) and chemical analyses (ICP-MS, ICP-AES), were performed on sediments, suspended particulate matters and filtered waters. Major and trace elements concentrations were obtained on two different granulometric fractions (0–2 mm and 0–50 μm) revealing the enrichment in heavy metals of fine particles. From one collecting campaign to another, seasonal variations could be evidenced on suspended matter composition even though major minerals (calcite, quartz and kaolinite) were always present. Furthermore, spatial variations were evidenced for Fensch and Moselle downstream sediments. Thus, very fine-grained sediments, poorly crystallized, displaying at the same time higher metal concentrations and higher organic matter content than in Fensch river material, were collected downstream, in a low hydrodynamic conditions zone, assumed as a preferential sedimentary zone or even as a placer. Strong correlations could be revealed between iron content and contaminant concentrations, confirming the origin of polluted material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号