首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   0篇
  国内免费   36篇
大气科学   5篇
地球物理   21篇
地质学   105篇
海洋学   10篇
天文学   5篇
自然地理   26篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   2篇
  2015年   9篇
  2014年   2篇
  2013年   17篇
  2012年   4篇
  2011年   2篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   9篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   5篇
  2000年   3篇
  1998年   5篇
  1997年   8篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   6篇
  1992年   4篇
  1991年   7篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1970年   2篇
  1969年   1篇
  1967年   1篇
  1966年   2篇
  1964年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
1.
2.
Diamonds have been discovered in mantle peridotites and chromitites of six ophiolitic massifs along the 1300 km‐long Yarlung‐Zangbo suture (Bai et al., 1993; Yang et al., 2014; Xu et al., 2015), and in the Dongqiao and Dingqing mantle peridotites of the Bangong‐Nujiang suture in the eastern Tethyan zone (Robinson et al., 2004; Xiong et al., 2018). Recently, in‐situ diamond, coesite and other UHP mineral have also been reported in the Nidar ophiolite of the western Yarlung‐Zangbo suture (Das et al., 2015, 2017). The above‐mentioned diamond‐bearing ophiolites represent remnants of the eastern Mesozoic Tethyan oceanic lithosphere. New publications show that diamonds also occur in chromitites in the Pozanti‐Karsanti ophiolite of Turkey, and in the Mirdita ophiolite of Albania in the western Tethyan zone (Lian et al., 2017; Xiong et al., 2017; Wu et al., 2018). Similar diamonds and associated minerals have also reported from Paleozoic ophiolitic chromitites of Central Asian Orogenic Belt of China and the Ray‐Iz ophiolite in the Polar Urals, Russia (Yang et al., 2015a, b; Tian et al., 2015; Huang et al, 2015). Importantly, in‐situ diamonds have been recovered in chromitites of both the Luobusa ophiolite in Tbet and the Ray‐Iz ophiolite in Russia (Yang et al., 2014, 2015a). The extensive occurrences of such ultra‐high pressure (UHP) minerals in many ophiolites suggest formation by similar geological events in different oceans and orogenic belts of different ages. Compared to diamonds from kimberlites and UHP metamorphic belts, micro‐diamonds from ophiolites present a new occurrence of diamond that requires significantly different physical and chemical conditions of formation in Earth's mantle. The forms of chromite and qingsongites (BN) indicate that ophiolitic chromitite may form at depths of >150‐380 km or even deeper in the mantle (Yang et al., 2007; Dobrthinetskaya et al., 2009). The very light C isotope composition (δ13C ‐18 to ‐28‰) of these ophiolitic diamonds and their Mn‐bearing mineral inclusions, as well as coesite and clinopyroxene lamallae in chromite grains all indicate recycling of ancient continental or oceanic crustal materials into the deep mantle (>300 km) or down to the mantle transition zone via subduction (Yang et al., 2014, 2015a; Robinson et al., 2015; Moe et al., 2018). These new observations and new data strongly suggest that micro‐diamonds and their host podiform chromitite may have formed near the transition zone in the deep mantle, and that they were then transported upward into shallow mantle depths by convection processes. The in‐situ occurrence of micro‐diamonds has been well‐demonstrated by different groups of international researchers, along with other UHP minerals in podiform chromitites and ophiolitic peridotites clearly indicate their deep mantle origin and effectively address questions of possible contamination during sample processing and analytical work. The widespread occurrence of ophiolite‐hosted diamonds and associated UHP mineral groups suggests that they may be a common feature of in‐situ oceanic mantle. The fundamental scientific question to address here is how and where these micro‐diamonds and UHP minerals first crystallized, how they were incorporated into ophiolitic chromitites and peridotites and how they were preserved during transport to the surface. Thus, diamonds and UHP minerals in ophiolites have raised new scientific problems and opened a new window for geologists to study recycling from crust to deep mantle and back to the surface.  相似文献   
3.
We propose, as a testable hypothesis, a basin-scale approach for interpreting the abundance of in situ produced cosmogenic isotopes, an approach which considers explicitly both the isotope and sediment flux through a drainage basin. Unlike most existing models, which are appropriate for evaluating in situproduced cosmogenic isotope abundance at discrete points on Earth's surface, our model is designed for interpreting isotope abundance in sediment. Because sediment is a mixture of materials, in favourable cases derived from throughout a drainage basin, we suggest that measured isotope abundances may reflect spatially averaged rates of erosion. We investigate the assumptions and behaviour of our model and conclude that it could provide geomorphologists with a relatively simple means by which to constrain the rate of landscape evolution if a basin is in isotopic steady state and if sampled sediments are well mixed.  相似文献   
4.
Sequences of tills, buried paleosols, wood and tephra in lateral moraines provide a record of Holocene advances and retreats of the Bugaboo Glacier in British Columbia. The oldest paleosol is tentatively classified as a Spodosol (Cryorthod). It incorporates Mazama tephra (6,800 B.P.) and charcoal and humus dated at 3,390 and 4.400B.P., respectively, and records early and middle Holocene warming and/or drying. This paleosol overliesa latest Pleistocene or early Holocene till associated with a nearby end moraine and assigned to the regionally known 'Crowfoot Advance'. Less-developed paleosols (Cryumbrepts) are formed on Neoglacial tills deposited shortly before 3,000 B. P., between c. 2,500 to 1,900 B. P., and between c. 900 B.P. and the 19th century. The paleosols and surface soils form microcatenas with morphological variations due to differences in original topography and vegetation. The chronology derived from these paleosols and tills generally agrees with, but increases the resolution of, what is known of Holocene glacier histories in the Canadian Cordillera.  相似文献   
5.
Rare earth elements (REE) were determined in fine, medium and coarse crystalline replacement dolomites, and for saddle dolomite cements from the Middle Devonian Presqu'ile barrier from Pine Point and the subsurface of the Northwest Territories and north-eastern British Columbia. REE patterns of the fine crystalline dolomite are similar to those of Middle Devonian limestones from the Presqu'ile barrier. Fine crystalline dolomite occurs in the back-barrier facies and may represent penecontemporaneous dolomitization at, or just below, the sea floor. Medium crystalline dolomite is widespread in the lower southern and lower central barrier. Medium crystalline dolomite is slightly depleted in heavy REE compared with Devonian marine limestones and fine crystalline dolomite, and has negative Ce and Eu anomalies. Medium crystalline dolomites replaced pre-existing limestones or were recrystallized from earlier fine crystalline dolomites. During these processes, the REE patterns of their precursors were modified. Late stage, coarse crystalline replacement dolomite and saddle dolomite cements occur together in the upper barrier and have similar geochemical signatures. Coarse crystalline dolomites have negative Eu anomalies, and those from the Pine Point area also have positive La anomalies. Saddle dolomites are enriched in light REE and have positive La anomalies. The REE patterns of coarse crystalline dolomite and saddle dolomite differ from those of marine limestones and fine and medium crystalline dolomites, suggesting that different diagenetic fluids were responsible for these later dolomites. Although massive dolomitization requires relatively large volumes of fluids in order to provide the necessary amounts of Mg2-. dolomitization and subsequent recrystallization may not necessarily modify the REE signatures of the precursor limestones because of the low concentrations of REE in most natural fluids. Thus, relative fluid-rock ratios during diagenesis may be estimated from REE patterns in the diagenetic and precursor minerals. Fine crystalline dolomites retain the REE patterns of their limestone precursors. In the medium and coarse crystalline dolomites the precursor REE patterns were apparently altered by large volumes of fluids involved during dolomitization. This study suggests that REE compositions of dolomites and their limestone precursors may provide important information about the relative amounts of fluids involved during diagenetic processes, such as dolomitization.  相似文献   
6.
To constrain the tectonic and metamorphic history of the GrenvilleProvince of southern Ontario we have quantitatively evaluatedchanges in peak metamorphic pressures and temperatures in theregion. Pressures increase northwest from the Frontenac Axistowards the Grenville Front, and they increase from 4–6kb near Madoc to 10–11 kb south of North Bay. Furtherto the north pressures decrease to 8–9 kb in the GrenvilleFront Tectonic Zone north of the French and Mattawa Rivers.Temperatures form a broad high, reaching 800?C northeast ofParry Sound, and decreasing to 400–500?C in the HastingsLow near Madoc, 600–650?C east towards the Ottawa River,and 650–700?C near Sudbury. This regional P-T distributionis in good agreement with constraints available from the distributionof aluminosilicate polymorphs. Comparison of thermobarometric results with regional tectonicfeatures shows a sharp discontinuity across the Mattawa andFrench Rivers, with a 1–2-kb pressure drop to the north.This implies that the major movement along this zone since theGrenville event was ‘south-side-up’ rather than‘north-side-up’ as suggested by Lumbers (1971).Large P-T discontinuities are not apparent across the domainboundaries mapped by Davidson and co-workers east of Parry Sound,but small discontinuities may exist. Sparse data may indicatethat the Central Metasedimentary Belt equilibrated at 1–2kb lower pressures than the Central Gneiss Terrane. Zoning profiles in garnet-pyroxene pairs have been used to placeconstraints on the metamorphic pressure-temperature-time pathin the Parry Sound, Port Severn, Bancroft, and Mattawa areasof the Grenville Province, Ontario. A nonlinear fitting routinewas used to obtain best-fit core and rim analyses for garnetsand pyroxenes. These results were combined with plagioclasecore/rim analyses to obtain estimates of peak and retrogradeconditions. The resultant retrograde P-Tpath has a slope of7 ? 10 b/?C, and involves pressure changes of 0?6–2?1kb for temperature changes of 60–130?C. Present address: Department of Geosciences, University of Arizona, Tucson, Arizona 85721  相似文献   
7.
Abstract— Knowledge of regolith depth structure is important for a variety of studies of the Moon and other bodies such as Mercury and asteroids. Lunar regolith depths have been estimated using morphological techniques (i.e., Quaide and Oberbeck 1968; Shoemaker and Morris 1969), crater counting techniques (Shoemaker et al. 1969), and seismic studies (i.e., Watkins and Kovach 1973; Cooper et al. 1974). These diverse methods provide good first order estimates of regolith depths across large distances (tens to hundreds of kilometers), but may not clearly elucidate the variability of regolith depth locally (100 m to km scale). In order to better constrain the regional average depth and local variability of the regolith, we investigate several techniques. First, we find that the apparent equilibrium diameter of a crater population increases with an increasing solar incidence angle, and this affects the inferred regolith depth by increasing the range of predicted depths (from ~7–15 m depth at 100 m equilibrium diameter to ~8–40 m at 300 m equilibrium diameter). Second, we examine the frequency and distribution of blocky craters in selected lunar mare areas and find a range of regolith depths (8–31 m) that compares favorably with results from the equilibrium diameter method (8–33 m) for areas of similar age (~2.5 billion years). Finally, we examine the utility of using Clementine optical maturity parameter images (Lucey et al. 2000) to determine regolith depth. The resolution of Clementine images (100 m/pixel) prohibits determination of absolute depths, but this method has the potential to give relative depths, and if higher resolution spectral data were available could yield absolute depths.  相似文献   
8.
Absolute calibration of sea level measurements collected from space-borne radar altimeters is usually performed with respect to collocated sea level in situ records from tide gauges or GPS buoys (Ménard et al. 1994 Ménard, Y., Jeansou, E. and Vincent, P. 1994. Calibration of the TOPEX-Poseidon altimeters at Lampedusa: Additional results at Harves. J. Geophys Res., 99(C12): 2448724504. http://dx.doi.org/10.1029%2F94JC01300 [Google Scholar]; Haines et al. 1996 Haines, B. J., Christensen, E. J., Norman, R. A., Parke, M. E., Born, G. H. and Gill, S. K. 1996. Altimeter calibration and geophysical monitoring from collocated measurements at the Harvest oil platform. EOS Trans. Suppl., 77(22): W16 [Google Scholar]; Bonnefond et al. 2003; Haines et al. 2003 Haines, B. J., Dong, D., Born, G. H. and Gill, S. K. 2003. The Harvest experiment: Monitoring Jason-1 and TOPEX/Poseidon from a California offshore platform. Mar. Geod., 26: 239259. [Taylor &; Francis Online], [Web of Science ®] [Google Scholar]; Schum et al. 2003 Schum, C. K., Yi, Y., Cheng, K., Kuo, C., Braun, A., Calmant, S. and Chambers, D. 2003. Calibration of Jason-1 Altimeter over Lake Erie. Mar. Geod., 26: 335354.  [Google Scholar]; Watson et al. 2003 Watson, C., Coleman, R., White, N., Church, J. and Govind, R. 2003. Absolute calibration of TOPEX/ Poseidon and Jason-1 using GPS buoys in Bass Strait, Australia. Mar. Geod., 26: 285304. [Taylor &; Francis Online], [Web of Science ®] [Google Scholar]; Watson et al. 2004 Watson, C., White, N., Coleman, R., Church, J., Morgan, P. and Govind, R. 2004. TOPEX/Poseidon and Jason-1: Absolute calibration in Bass Strait, Australia. Mar. Geod., 27: 107131. http://dx.doi.org/10.1080%2F01490410490465373[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]). Such a method allows regular and long-term control of altimetric systems with independent records. However, this approach is based on a single, geographically dependent point. In order to obtain more significant and accurate bias and drift estimates, there is a strong interest in multiplying the number of calibration opportunities. This article describes a method, called the “offshore method” that was developed to extend the single-point approach to a wider regional scale. The principle is to compare altimeter and tide gauge sea level data not only at the point of closest approach of an overflying pass, but also at distant points along adjacent satellite passes. However, connecting sea level satellite measurements with more distant in situ data requires a more accurate determination of the geoid and mean ocean dynamic topography slopes, and also of the ocean dynamical changes. In this demonstration experiment, 10 years of averaged TOPEX/Poseidon mean sea level profiles are used to precisely determine the geoid and the mean ocean circulation slope. The Mog2d barotropic ocean model (Carerre et Lyard 2003 Carrère, L. and Lyard, F. 2003. Modelling the barotropic response of the global ocean to atmospheric wind and pressure forcing-comparisons with observations. GRL, 30(6): 1275 [Google Scholar]) is used to improve our estimate of the ocean dynamics term. The method is first validated with Jason-1 data, off Corsica, where the dedicated calibration site of Senetosa provides independent reference data. The method is then applied to TOPEX/Poseidon on its new orbit and to Geosat Follow On. The results demonstrate that it is feasible to make altimeter calibrations a few tens to hundreds of kilometers away from a dedicated site, as long as accurate mean sea level altimeter profiles can be used to ensure the connection with reference tide gauges.  相似文献   
9.
10.
<正>Ophiolites are fragments of ancient ocean lithosphere emplaced on continental margins,in island arcs or in accretionary prisms,and have long been studied to better understand the evolution of ocean basins and collision of tectonic plates,the processes of mountain building and the occurrence of valuable ore bodies,such as podiform  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号