首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Mineralogical analysis of calcite and Mg-calcite by X-ray diffraction requires that the samples be ground to a powder. Such grinding determines the particle size of the powder and the structural damage of the minerals. Both of these in turn affect the peak intensities recorded by the X-ray machine. Most carbonate sediments are inhomogeneous; they contain both calcite and Mg-calcite which are affected differently by grinding. Such differences cause quantitative analytical results to be inconsistent with the true mineralogical abundance. The two acceptable methods of analysis—(1) measurement of peak height from the base and (2) measurement of the area under the peak—were compared to determine if sample preparation affects the quantitative results. In samples with variable and relatively small amounts of calcite and Mg-calcite the measurement of peak height yields more reproducible results than does the measurement of peak areas. Different proportions of particle size of the mineralogical components in a sample powder, affect proportionally more the peak areas than the peak heights. Extensive grinding causes structural damage of the component minerals which affects much more the peak areas than the peak heights. Thus for quantitative analyses of calcite and Mg-calcite in inhomogeneous carbonate samples which require differing grinding times and have greatly variable amounts of calcite and Mg-calcite, the peak height measurement seems to be a better method than peak area measurement.  相似文献   
2.
Most efforts in the study of sea-marginal sabkhas have concentrated on the Persian Gulf, but little is known about the sediments and mineralogy of sabkhas marginal to other seas. The purpose of this paper was to present some geochemical and mineralogical observations in a recent sabkha on the coast of Sinai along the Gulf of Suez. The sabkha is composed of coarse clastic sediments with marine-derived groundwater at depth of about 1 m. The general morphology, climate and water salinity of the Gulf of Suez resemble those of the Persian Gulf, despite the fact that the content of authigenic evaporites in this sabkha is more sparse. The evaporite minerals accumulated only in the upper 30–40 cm of the sabkha, below that and down to the groundwater table, there is no accumulation of evaporites. Laterally, the salinity of the groundwater in the sabkha and the concentration of evaporites in the sediments above it increase constantly with distance from the shore. In contrast to the Persian Gulf where anhydrite is a major evaporite mineral, in Belayim gypsum is the only calcium sulphate mineral in the recent sabkha. Anhydrite is found only in an old elevated sabkha where it recrystallized from gypsum. The gypsum occurs as interstitial crystal concentrations or lithified horizons almost exclusively at the depth of 20–40 cm below the sabkha surface. Above that, in the uppermost horizons, there is in situ accumulation of interstitial halite crystals. The total concentrations of gypsum and halite are almost equal in this sabkha. The sea water recharge in El Belayim is almost exclusively by seepage through the sabkha sediments and not by flooding. The groundwater under this sabkha is only slightly more saline than the Gulf water, thus, not heavy enough for extensive downward refluxing. The major hydrodynamic process must be upward migration of the brines from the groundwater, precipitating on the way gypsum and later halite with some magnesite. Since the sediments of the sabkha are too coarse to support extensive capillary movement, the brines must, therefore, migrate upwards due to ‘evaporative pumping’.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号