首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
地球物理   3篇
地质学   5篇
天文学   2篇
自然地理   1篇
  2018年   2篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2010年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
The paper is devoted to the conditions under which opacite rims developed around hornblende grains in andesite of the catastrophic eruption (March 30, 1956) of Bezymyannyi volcano, Kamchatka. The opacite rims were produced by a bimetasomatic reaction between hornblende and melt with the development of the following zoning: hornblende → Px + Pl + Ti-MagPx + PlPx → melt. Biometasomatic reaction was accompanied by the active removal of CaO from the rim, addition of SiO2, and more complicated behavior of other components. The hornblende also shows reactions of its volumetric decomposition under near-isochemical conditions. The opacite rims developed under isobaric conditions, at a pressure of approximately 6 kbar. The main reason for the instability of the hornblende was the heating of the magma chamber from 890 to 1005°C due to new hot magma portion injection. The time interval between the injection and the start of eruption was estimated from the thickness of the opacite rims and did not exceed 37 days. Hence, the March 30, 1956, eruption was not related to the volcanic activity in November of 1955 but to the injection of a fresh magma portion in February–March of 1956.  相似文献   
2.
Late Quaternary volcanoes of Sredinny Range (Kamchatka) attract geoscientists’ attention by their unusual geochemical features and geodynamic setting. They produced volcanic rocks that are enriched relative to N-MORB in most of incompatible trace elements (except HREE), including strong enrichment in large-ion lithophile elements, and show a negative Nb–Ta anomaly, which is typical for rocks formed in supra-subduction settings. However, modern subduction of the Pacific Plate does not reach the most part of Sredinny Range, as inferred by mapping of Wadati–Benioff zone or seismic tomography. We constrain the source of parental magmas for Sredinny Range volcanic rocks by combining major and trace element geochemical data for olivine and naturally quenched olivine-hosed melt inclusions for Holocene tephra layers of the Kekuknaisky field. Composition of the most magnesian olivine (Ni > 2000 ppm, Fe/Mn ≈ 75 at Mg# ~ 84–85 mol %) and geochemical characteristics of the most primitive melts (FC3MS = 0.61 ± 0.04 (2s)) are consistent with their derivation from a pyroxenite source, while elevated LREE/HREE ratios in lavas indicate that it contained garnet. This garnet-bearing pyroxenite likely originated from the lower crust or lithospheric mantle. Its melting could have occurred due to delamination and sinking into the hotter mantle.  相似文献   
3.
We have constructed a new high resolution solar reference spectrum in the spectral range between 250 and 550 nm. The primary use of this spectrum is for the calibration of the Dutch – Finnish Ozone Monitoring Instrument (OMI), but other applications are mentioned. The incentive for deriving a new high resolution solar reference spectrum is that available spectra do not meet our requirements on radiometric accuracy or spectral resolution. In this paper we explain the steps involved in constructing the new spectrum, based on available low and high resolution spectra and discuss the main sources of uncertainty. We compare the result with solar measurements obtained with the OMI as well as with other UV-VIS space-borne spectrometers with a similar spectral resolution. We obtain excellent agreement with the OMI measurements, which indicates that both the newly derived solar reference spectrum and our characterization of the OMI instrument are well understood. We also find good agreement with previously published low resolution spectra. The absolute intensity scale, wavelength calibration and representation of the strength of the Fraunhofer lines have been investigated and optimized to obtain the resulting high resolution solar reference spectrum.  相似文献   
4.
Tephrochronologic studies conducted in the Levaya Avacha River valley helped determine the true age of the Veer cinder cone, which formed approximately in 470 AD (1600 14C BP). These data refute the existing idea that it was generated in 1856. The monogenetic Veer cone should be cancelled from the catalogs of historical eruptions and active volcanoes in Kamchatka. The eruption of this cone was a reflection of the all-Kamchatkan increase in the activity of endogenous processes that occurred in 0–650 AD.  相似文献   
5.
6.
We advance our own definitions of the following terms: catastrophic volcanic eruption (CE), catastrophic supereruption (CSE), different-rank and different-type episodes and phases of volcanic catastrophism (VC). All eruptions are subdivided into three classes according to the volume and weight of the erupted and transported (juvenile and resurgent) material, whatever its chemical composition: class I (>0.5 km3), class II (≥5 km3), and class III, or supereruptions (>50 km3). We characterize the types and varieties of CEs and CSEs, with most of these being the main components of identified VC episodes and phases. The primary phenomena to be considered include catastrophic events of the 19th to 21st centuries, not only in the Kuril–Kamchatka region, but also in other volcanic areas. These events have been studied in detail by modern methods and can serve as approximate models to reconstruct similar past events, especially regarding their dynamics, productivity, and catastrophic impact.  相似文献   
7.
This paper provides an assessment of the degree and character of vegetation damage due to the 1996 phreatomagmatic eruption in Akademii Nauk Caldera and considers the mechanisms of posteruptive vegetation recovery. Key features of the primary succession at the Novogodnii Peninsula have been revealed. The vegetation cover prior to the 1996 eruption is reconstructed, and the effect of minor ashfalls that occurred in 1996–2003 is examined.  相似文献   
8.
The main goal of this investigation is estimating volume of volatile emission, atmospheric and climatic impact of the Kurile Lake caldera-forming eruption, one of the Earth’s largest Holocene explosive eruptions. The volatile content of magma before the eruption was estimated by comparing H2O, S, Cl and F contents in natural quenched glassy melt inclusions trapped by plagioclase phenocrysts. The volatile content of igneous rocks after eruption was estimated by comparing concentrations of degassed matrix glasses. As a result of KO-eruption not more than (3.7–4.2) × 1012 kg of water, (4.3–4.9) × 1010 kg of chlorine, (8.6–9.8) × 109 kg of fluorine and (2.6–2.9) × 1010 kg of sulphur were injected into the atmosphere. This eruption had to produce an important climatic impact.  相似文献   
9.
Fossil diatom assemblages in a sediment core from a small lake in Central Kamchatka (Russia) were used to reconstruct palaeoenvironmental conditions of the late Holocene. The waterbody may be a kettle lake that formed on a moraine of the Two-Yurts Lake Valley, located on the eastern slope of the Central Kamchatka Mountain Chain. At present, it is a seepage lake with no surficial outflow. Fossil diatom assemblages show an almost constant ratio between planktonic and periphytic forms throughout the record. Downcore variations in the relative abundances of diatom species enabled division of the core into four diatom assemblage zones, mainly related to changes in abundances of Aulacoseira subarctica, Stephanodiscus minutulus, and Discostella pseudostelligera and several benthic species. Associated variations in the composition and content of organic matter are consistent with the diatom stratigraphy. The oldest recovered sediments date to about 3220 BC. They lie below a sedimentation hiatus and likely include reworked deposits from nearby Two-Yurts Lake. The initial lake stage between 870 and 400 BC was characterized by acidic shallow-water conditions. Between 400 BC and AD 1400, lacustrine conditions were established, with highest contributions from planktonic diatoms. The interval between AD 1400 and 1900 might reflect summer cooling during the Little Ice Age, indicated by diatoms that prefer strong turbulence, nutrient recycling and cooler summer conditions. The timing of palaeolimnological changes generally fits the pattern of neoglacial cooling during the late Holocene on Kamchatka and in the neighbouring Sea of Okhotsk, mainly driven by the prevailing modes of regional atmospheric circulation.  相似文献   
10.
Holocene palaeolimnological conditions were reconstructed by analysing fossil diatom assemblages within a lacustrine sediment core from Lake Sokoch, southern Kamchatka (Russia). Sediments of this proglacial lake cover the past 9400 years and hence represent almost the whole Holocene history. The biosiliceous muddy sample material was analysed for several geochemical and biological parameters, such as the total organic carbon and biogenic silica content, and the diatom community (quantitative and qualitative changes). Based on changes in the relative abundances of the most frequent species Aulacoseira subarctica, Staurosira martyi and Stephanodiscus alpinus and a depth‐constrained cluster analyses (CONISS), five diatom assemblage zones could be identified. The oldest stage recovered lies between 9400 and 9000 cal. a BP and reflects the initial lake stage after the retreat of local glaciers, with a high detrital sediment supply, shallow‐water conditions and a high diatom diversity. The next zone (9000–6200 cal. a BP) shows a more mature lake system with accumulating biogenic remains and higher water levels during climate amelioration. This is followed by the most obvious change in the diatom assemblage, delineated by an occurrence of S. alpinus, between 6200 and 2700 cal. a BP. Wet conditions in spring probably led to an enhanced fluvial runoff and eutrophic to hypertrophic conditions. The end of this period might reflect climate deterioration related to the Neoglacial epoch of the Holocene. Between 2700 and 1600 cal. a BP the sediments of Lake Sokoch reveal oligotrophic water conditions in a windy high‐energy environment. The youngest interval, between 1600 cal. a BP and the Present, indicates shallow‐water conditions and a very short growing season, which might reflect the Little Ice Age. The results may offer a baseline for the interpretation of Holocene palaeoenvironmental changes in Kamchatka and their relation to regional climate change from a palaeoecological perspective.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号