首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   16篇
  国内免费   1篇
测绘学   14篇
大气科学   10篇
地球物理   102篇
地质学   78篇
海洋学   22篇
天文学   31篇
自然地理   9篇
  2024年   1篇
  2022年   1篇
  2021年   3篇
  2020年   14篇
  2019年   9篇
  2018年   18篇
  2017年   10篇
  2016年   16篇
  2015年   10篇
  2014年   16篇
  2013年   15篇
  2012年   6篇
  2011年   19篇
  2010年   21篇
  2009年   22篇
  2008年   16篇
  2007年   16篇
  2006年   8篇
  2005年   11篇
  2004年   9篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有266条查询结果,搜索用时 15 毫秒
1.
The Newtonian viscosity of synthetic rhyolitic liquids with 0.15-5.24 wt% dissolved water was determined in the interval between 580 and 1640 °C and pressures of 1 atm and 5-25 kbar. Measurements were performed by combining static and accelerated (up to 1000g) falling sphere experiments on water-bearing samples, with high temperature concentric cylinder experiments on 0.15 wt% H2O melts. These methods allowed viscosity determinations between 102 and 107 Pa s, and cover the complete range of naturally occurring magmatic temperatures, pressures, and H2O-contents for rhyolites.Our viscosity data, combined with those from previous studies, were modeled by an expression based on the empirical Vogel-Fulcher-Tammann equation, which describes viscosities and derivative properties (glass transition temperature Tg, fragility m, and activation volume of viscous flow Va) of silicic liquids as a function of P-T-X(H2O). The fitted expressions do not account for composition-dependent parameters other than X(H2O) and reproduce the entire viscosity database for silicic liquids to within 3.0% average relative error on log η (i.e. std. error of estimate of 0.26 log units).The results yield the expected strong decrease of viscosity with temperature and water content, but show variable pressure dependencies. Viscosity results to be strongly affected by pressure at low pressures; an effect amplified at low temperatures and water contents. Fragility, as a measure for the deviation from Arrhenian behavior, decreases with H2O-content but is insensitive to pressure. Activation volumes are always largely negative (e.g., less than −10 cm3/mol) and increase strongly with H2O-content. Variations in melt structure that may account for the observed property variations are discussed.  相似文献   
2.
3.
In the framework of the WFD 2000/60/EC intercalibration process the updated versions of the EEI and R‐MaQI, proposed by Italy and Greece for the transitional waters, have been applied to the macrophytes of the Venice lagoon to test their comparability and relationships with the pressure gradients. Submerged macrophytes were collected during spring 2007 at 60 sites spread within the lagoon. At each site, five random samples were collected and the total coverage of benthic macrophytes in the field was estimated based on a number of tests of the bottom. To assess seagrass epiphytes, five shoots were collected for each replicate. Physico‐chemical data were collected in the water column at 14 sites selected to reflect the main hydro‐geomorphological and trophic gradients of the lagoon. The analyses performed indicated that the two metrics appeared to be weakly intercalibrated and only the 30% of the sampling sites displayed the same quality class. The main differences fell into the Moderate and Low classes and the two indices provided discordant results in the intermediate and confined areas of the lagoon. In contrast, the two indices showed good affinity in the marine areas of inlets, which are characterised by seagrass meadows and late‐successional macroalgae. Similar results were evidenced also in a redundancy analysis by the different relationships between quality classes and the physico‐chemical gradients. The main reason for this seems to be the heterogeneity of species–environment relationships inside the groups of species on which the indices are based. Critical aspects of methodological differences and applicability of the macrophyte indices proposed by Italy and Greece for the transitional waters of the Mediterranean eco‐region are discussed.  相似文献   
4.
The global navigation satellite system (GNSS) can provide centimeter positioning accuracy at low costs. However, in order to obtain the desired high accuracy, it is necessary to use high-quality atmospheric models. We focus on the troposphere, which is an important topic of research in Brazil where the tropospheric characteristics are unique, both spatially and temporally. There are dry regions, which lie mainly in the central part of the country. However, the most interesting area for the investigation of tropospheric models is the wet region which is located in the Amazon forest. This region substantially affects the variability of humidity over other regions of Brazil. It provides a large quantity of water vapor through the humidity convergence zone, especially for the southeast region. The interconnection and large fluxes of water vapor can generate serious deficiencies in tropospheric modeling. The CPTEC/INPE (Center for Weather Forecasting and Climate Studies/Brazilian Institute for Space Research) has been providing since July 2012 a numerical weather prediction (NWP) model for South America, known as Eta. It has yield excellent results in weather prediction but has not been used in GNSS positioning. This NWP model was evaluated in precise point positioning (PPP) and network-based positioning. Concerning PPP, the best positioning results were obtained for the station SAGA, located in Amazon region. Using the NWP model, the 3D RMS are less than 10 cm for all 24 h of data, whereas the values reach approximately 60 cm for the Hopfield model. For network-based positioning, the best results were obtained mainly when the tropospheric characteristics are critical, in which case an improvement of up to 7.2 % was obtained in 3D RMS using NWP models.  相似文献   
5.
Brines in Cambrian sandstones and Ordovician dolostones of the St-Lawrence Lowlands at Bécancour, Québec, Canada were sampled for analysis of all stable noble gases in order to trace their origin and migration path, in addition to quantifying their residence time. Major ion chemistry indicates that the brines are of Na-Ca-Cl type, possibly derived from halite dissolution. 87Sr/86Sr ratios and Ca excess indicate prolonged interactions with silicate rocks of the Proterozoic Grenville basement or the Cambrian Potsdam sandstone. The brines constrain a 2-3% contribution of mantle 3He and large amounts of nucleogenic 21Ne and 38Ar and radiogenic 4He and 40Ar. 4He/40Ar and 21Ne/40Ar ratios, corrected for mass fractionation during incomplete brine degassing, are identical to their production ratios in rocks. The source of salinity (halite dissolution), plus the occurrence of large amounts of 40Ar in brines constrain the residence time of Bécancour brines as being older than the Cretaceous. Evaporites in the St-Lawrence Lowlands likely existed only during Devonian-Silurian time. Brines might result from infiltration of Devonian water leaching halite, penetrating into or below the deeper Cambrian-Ordovician aquifers. During the Devonian, the basin reached temperatures higher than 250 °C, allowing for thermal maturation of local gas-prone source rocks (Utica shales) and possibly facilitating the release of radiogenic 40Ar into the brines. The last thermal event that could have facilitated the liberation of 40Ar into fluids and contributed to mantle 3He is the Cretaceous Monteregian Hills magmatic episode. For residence times younger than the Cretaceous, it is difficult to find an appropriate source of salinity and of nucleogenic/radiogenic gases to the Bécancour brines.  相似文献   
6.
The use of logic trees in probabilistic seismic hazard analyses often involves a large number of branches that reflect the uncertainty in the selection of different models and in the selection of the parameter values of each model. The sensitivity analysis, as proposed by Rabinowitz and Steinberg [Rabinowitz, N., Steinberg, D.M., 1991. Seismic hazard sensitivity analysis: a multi-parameter approach. Bull. Seismol. Soc. Am. 81, 796–817], is an efficient tool that allows the construction of logic trees focusing attention on the parameters that have greater impact on the hazard.In this paper the sensitivity analysis is performed in order to identify the parameters that have the largest influence on the Western Liguria (North Western Italy) seismic hazard. The analysis is conducted for six strategic sites following the multi-parameter approach developed by Rabinowitz and Steinberg [Rabinowitz, N., Steinberg, D.M., 1991. Seismic hazard sensitivity analysis: a multi-parameter approach. Bull. Seismol. Soc. Am. 81, 796–817] and accounts for both mean hazard values and hazard values corresponding to different percentiles (e.g., 16%-ile and 84%-ile). The results are assessed in terms of the expected PGA with a 10% probability of exceedance in 50 years for rock conditions and account for both the contribution from specific source zones using the Cornell approach [Cornell, C.A., 1968. Engineering seismic risk analysis. Bull. Seismol. Soc. Am. 58, 1583–1606] and the spatially smoothed seismicity [Frankel, A., 1995. Mapping seismic hazard in the Central and Eastern United States. Seismol. Res. Lett. 66, 8–21]. The influence of different procedures for calculating seismic hazard, seismic catalogues (epicentral parameters), source zone models, frequency–magnitude parameters, maximum earthquake magnitude values and attenuation relationships is considered. As a result, the sensitivity analysis allows us to identify the parameters with higher influence on the hazard. Only these parameters should be subjected to careful discussion or further research in order to reduce the uncertainty in the hazard while those with little or no effect can be excluded from subsequent logic-tree-based seismic hazard analyses.  相似文献   
7.
8.
Reliable automatic procedure for locating earthquake in quasi-real time is strongly needed for seismic warning system, earthquake preparedness, and producing shaking maps. The reliability of an automatic location algorithm is influenced by several factors such as errors in picking seismic phases, network geometry, and velocity model uncertainties. The main purpose of this work is to investigate the performances of different automatic procedures to choose the most suitable one to be applied for the quasi-real-time earthquake locations in northwestern Italy. The reliability of two automatic-picking algorithms (one based on the Characteristic Function (CF) analysis, CF picker, and the other one based on the Akaike’s information criterion (AIC), AIC picker) and two location methods (“Hypoellipse” and “NonLinLoc” codes) is analysed by comparing the automatically determined hypocentral coordinates with reference ones. Reference locations are computed by the “Hypoellipse” code considering manually revised data and tested using quarry blasts. The comparison is made on a dataset composed by 575 seismic events for the period 2000–2007 as recorded by the Regional Seismic network of Northwestern Italy. For P phases, similar results, in terms of both amount of detected picks and magnitude of travel time differences with respect to manual picks, are obtained applying the AIC and the CF picker; on the contrary, for S phases, the AIC picker seems to provide a significant greater number of readings than the CF picker. Furthermore, the “NonLinLoc” software (applied to a 3D velocity model) is proved to be more reliable than the “Hypoellipse” code (applied to layered 1D velocity models), leading to more reliable automatic locations also when outliers (wrong picks) are present.  相似文献   
9.
Ressi is a small (2.4 ha) forested catchment located in the Italian pre-Alps. The site became an experimental catchment to investigate the water fluxes in the soil–plant–atmosphere continuum and the impact of vegetation on runoff generation in 2012. The elevation of the catchment ranges from 598 to 721 m a.s.l. and the climate is humid temperate. The bedrock consists of rhyolites and dacites; the soil is a Cambisol. The catchment is covered by a dense forest, dominated by beech, chestnut, maple, and hazel trees. The field set up includes measurements of the rainfall in an open area, streamflow at the outlet, soil moisture at various depths and locations, and depth to water table in six piezometers at a 5- or 10-min interval. Samples of precipitation, stream water, shallow groundwater and soil water are collected monthly for tracer analysis (stable isotopes (2H and 18O), electrical conductivity and major ions), and during selected rainfall–runoff events to determine the contribution of the various sources to runoff. Since 2017, soil and plant water samples have been collected to determine the sources of tree transpiration. Data collected in the period 2012–2016 are publicly available. Data collection is ongoing, and the data set is expected to be updated on an annual basis to include the most recent measurements.  相似文献   
10.
Quantifying geomorphic conditions that impact riverine ecosystems is critical in river management due to degraded riverine habitat, changing flow and thermal conditions, and increasing anthropogenic pressure. Geomorphic complexity at different scales directly impacts habitat heterogeneity and affects aquatic biodiversity resilience. Here we showed that the combination of continuous spatial survey at high resolution, topobathymetric light detection and ranging (LiDAR), and continuous wavelet analysis can help identify and characterize that complexity. We used a continuous wavelet analysis on 1-m resolution topobathymetry in three rivers in the Salmon River Basin, Idaho (USA), to identify different scales of topographic variability and the potential effects of this variability on salmonid redd site selection. On each river, wavelet scales characterized the topographic variability by portraying repeating patterns in the longitudinal profile. We found three major representative spatial wavelet scales of topographic variability in each river: a small wavelet scale associated with local morphology such as pools and riffles, a mid-wavelet scale that identified larger channel unit features, and a large wavelet scale related to valley-scale controls. The small wavelet scale was used to identify pools and riffles along the entire lengths of each river as well as areas with differing riffle-pool development. Areas along the rivers with high local topographic variability (high wavelet power) at all wavelet scales contained the largest features (i.e., deepest or longest pools) in the systems. By comparing the wavelet power for each wavelet scale to Chinook salmon redd locations, we found that higher small-scale wavelet power, which is related to pool-riffle topography, is important for redd site selection. The continuous wavelet methodology objectively identified scales of topographic variability present in these rivers, performed efficient channel-unit identification, and provided geomorphic assessment without laborious field surveys.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号