首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地质学   3篇
  2013年   2篇
  1997年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Dalstra  H.J.  Bloem  E.J.M.  Ridley  J.R.  Groves  D.I. 《Geologie en Mijnbouw》1997,76(4):321-338
The Southern Cross Province in the Archean Yilgarn Block of Western Australia comprises large dome-shaped granitoid bodies surrounded by narrow greenstone belts. Determination of the emplacement mechanism of these domes is fundamental for understanding the tectonic history of this region. Many structures in the greenstone belts show trends which reflect their tectonic relationships with the granitoid domes. Some of these structures host large gold occurrences. The domes have concentric foliation patterns, both within the granitoids themselves, and in the neighbouring greenstone belts. The smaller domes only have radial mineral lineation patterns in their wall rocks, but the largest dome, the Ghooli Dome, has also a tangential pattern. The prevailing gentle dip of the foliation in the centre of this dome and the abundance of greenstone xenoliths suggest that the present exposures are close to its roof. Geothermometry and geobarometry on mineral assemblages in the Ghooli granitoid and its xenoliths show that its crystallisation temperature was just above 700 °C at a relatively high pressure of 4.3 to 6.2 kbar. These P-T conditions are higher than those inferred for peak metamorphism in the greenstones. Therefore, this granitoid must have been emplaced initially at crustal levels deeper than the maximum burial of the greenstones which flank the dome. The Ghooli Dome has a SHRIMP U-Pb zircon age of 2691 ± 7 Ma. Diapiric rise of the granitoid plutons taking place in a regional compressive tectonic regime is considered to be the most likely mechanism for the final emplacement of these bodies into their host rock at about 2636–2620 Ma. This concept is preferred over the alternatives because it best reconciles the calculated P-T data, the observed structural patterns, the presence of pegmatites and aplites in the host rock, and the orientation of the mineral-bearing structures.  相似文献   
2.
Southern Cross, where gold deposits are sited in narrow greenstone belts surrounding granitoid domes, was one of the earliest gold mining centres in Western Australia. SHRIMP U–Pb zircon and Pb‐isotope studies of the largest granitoid dome, the Ghooli Dome (80 × 40 km), provide important constraints on the crustal evolution and structural history of the central part of the Archaean Yilgarn Craton, Western Australia, which includes Southern Cross. The north‐northwest‐south‐southeast‐oriented ovoid Ghooli Dome has a broadly concentric foliation that is subhorizontal or gently dipping in its central parts and subvertical along its margins. Foliated granitoids in the dome are dated at ca 2724 ± 5 and 2688 ± 3 Ma using the SHRIMP U–Pb zircon and Pb–Pb isochron methods, respectively. These new data, together with the published SHRIMP U–Pb zircon age of 2691 ± 7 Ma at another locality, 20 km from the centre of the Koolyanobbing Shear Zone, suggest that the Ghooli Dome was emplaced at ca 2.72–2.69 Ga. Because the Ghooli Dome and the other domes, which are enveloped by narrow greenstone belts, are cut by the >650 km‐long and 6–15 km‐wide Koolyanobbing Shear Zone, the ca 2.69 Ga age is interpreted as the maximum age of the last major movement on this structure. The pre‐2.69 Ga history, if any, of the shear zone remains unknown. The shear zone is intruded by an undeformed porphyritic granitoid which has a SHRIMP U–Pb zircon age of 2656 ± 4 Ma. This age is, thus, the minimum age of major movement along this shear zone. Post‐gold mineralisation pegmatitic‐leucogranite from the Nevoria gold mine has a SHRIMP U–Pb zircon age of 2634 ± 4 Ma, with xenocrystic zircon cores of ca 2893 ± 6 Ma, constraining the minimum age of gold mineralisation there to ca 2.63 Ga. The ca 2.72–2.69 Ga granitoids also contain ca 2.98 and 2.78 Ga xenocrystic zircon cores, suggesting an extensive crustal prehistory for their source. Whereas there is a general temporal relationship between the periods of older (ca 3.0 Ga) and younger (ca 2.80 and 2.73 Ga) volcanism and the older (2.98, 2.78 and 2.72–2.69 Ga) granitoid intrusions, there is no known volcanism temporally associated with the 2.65–2.63 Ga granitoid intrusions in the Yilgarn Craton. Other heat sources and/or tectonic processes, required for the generation of these intrusions, are interpreted to be related to a lithospheric delamination event related to continental collision.  相似文献   
3.
Two contrasting styles of metamorphism are preserved in the central Southern Cross Province. An early, low‐grade and low‐strain event prevailed in the central parts of the Marda greenstone belt and was broadly synchronous with the first major folding event (D1) in the region. Mineral assemblages similar to those encountered in sea‐floor alteration are indicative of mostly prehnite‐pumpellyite facies conditions, but locally actinolite‐bearing assemblages suggest conditions up to mid‐greenschist facies. Geothermobarometry indicates that peak metamorphic conditions were of the order of 250–300°C at pressures below 180 MPa in the prehnite‐pumpellyite facies, but may have been as high as 400°C at 220 MPa in the greenschist facies. A later, higher grade, high‐strain metamorphic event was largely confined to the margins of the greenstone belts. Mineral assemblages and geothermobarometry suggest conditions from upper greenschist facies at P–T conditions of about 500°C and 220 MPa to upper amphibolite facies at 670°C and 400 MPa. Critical mineral reactions in metapelitic rocks suggest clockwise P–T paths. Metamorphism was diachronous across the metamorphic domains. Peak metamorphic conditions were reached relatively early in the low‐grade terrains, but outlasted most of the deformation in the higher grade terrains. Early metamorphism is interpreted to be a low‐strain, ocean‐floor‐style alteration event in a basin with high heat flow. In contrast, differential uplift of the granitoids and greenstones, with conductive heat input from the granitoids into the greenstones, is the preferred explanation for the distribution and timing of the high‐strain metamorphism in this region.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号