首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
地质学   18篇
  2015年   1篇
  2014年   2篇
  2012年   4篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1997年   1篇
  1995年   2篇
  1992年   1篇
排序方式: 共有18条查询结果,搜索用时 343 毫秒
1.
Using single-crystal X-ray diffraction from a diamond anvil cell, the compressibility of a synthetic fluorapatite was determined up to about 7?GPa. The compression pattern was anisotropic, with greater change along a than c. Unit cell parameters varied linearly with β a =3.32(8)?10?3 and β c =2.40(5)?10?3 GPa?1, giving a ratio β a c =1.38:1. Data fitted with a third-order Birch-Murnaghan EOS yielded a bulk modulus of K 0=93(4)?GPa with K′=5.8(1.8). The evolution of the crystal structure of fluorapatite was analysed using data collected at room pressure, at 3.04 and 4.72?GPa. The bulk modulus of phosphate tetrahedron is about three times greater than the bulk modulus of calcium polyhedra. The values were 270(10), 100(4) and 86(3) GPa for P, Ca1 (nine-coordinated) and Ca2 (seven-coordinated) respectively. While the calcium polyhedra became more regular with pressure, the distortion of the phosphate tetrahedron remained unchanged. The size of the channel extending along the [001] direction represented the most compressible direction. The Ca2–Ca2 distance decreased from 3.982 to 3.897?Å on compression from 0.0001 to 4.72?GPa. The anisotropic compressional pattern may be understood in terms of the greater compressibility of the channel size over the polyhedral units. The reduction of the channel volume was measured by the evolution of the trigonal prism, having the Ca2–Ca2–Ca2 triangle as its base and the c lattice parameter as its height. This prism volume changed from 47.3?Å3 at room pressure to 44.78?Å3 at 4.72?GPa. Its relatively high bulk moduli, 86(3) GPa, indicated that the channel did not collapse with pressure and the apatite structure could remain stable at very high pressure.  相似文献   
2.
Synchrotron single-crystal X-ray diffraction experiments at high-pressure and high-temperature conditions were performed up to 20 GPa and 573.0(2) K on a fully ordered stoichiometric dolomite and a partially disordered stoichiometric dolomite [order parameter, s = 0.26(6)]. The ordered dolomite was found to be stable up to approximately 14 GPa at ambient temperature and up to approximately 17 GPa at T = 573.0(2) K. The PV data from the ambient temperature experiments were analysed by a second-order Birch–Murnaghan equation-of-state giving K 0 = 92.7(9) GPa for the ordered dolomite and K 0 = 92.5(8) GPa for the disordered dolomite. The high-temperature data, collected for the ordered sample, were fitted by a third-order Birch–Murnaghan equation-of-state resulting in K 0 = 95(6) GPa and K′ = 2.6(7). In order to compare the three experiments results, a third-order Birch–Murnaghan equation-of-state was also calculated for the ambient temperature experiments giving K 0 = 93(3) GPa, K′ = 3.9(6) for the ordered dolomite and K 0 = 92(3) GPa, K′ = 4.0(4) for the disordered dolomite. The derived axial moduli show that dolomite compresses very anisotropically, being the c-axis approximately three times more compressible than the a-axis. The axial compressibility increases as T increases, and the a-axis is the most temperature-influenced axis. On the contrary, axial compressibility is not influenced by disordering. Structural refinements at different pressures show that Ca and Mg octahedra are almost equally compressible in the ordered dolomite with K(CaO6) = 109(4) GPa and K(MgO6) = 103(3) GPa. On the contrary, CaO6 compressibility is reduced and MgO6 compressibility is increased in the disordered crystal structure where K(CaO6) = 139(4) GPa and K(MgO6) = 89(4) GPa. Disordering is found to increase CaO6 and to decrease MgO6 bond strengths, thus making stiffer the Ca octahedron and softer the Mg octahedron. Cation polyhedra are distorted in both ordered and disordered dolomites and they increase in regularity as P increases. Ordered dolomite approaches regularity at approximately 14 GPa. The increase in regularity of octahedra in the disordered dolomite is strongly affected by the very slow regularization of MgO6 with respect to CaO6. The phase transition to the high-pressure polymorph of dolomite (dolomite-II), which is driven by a significant increase in the regularity of both cations polyhedra and mineral crystal structure, occurs in the ordered dolomite at ambient temperature at approximately 14 GPa; whereas no clear evidences of phase transition were observed as regards the disordered crystal structure.  相似文献   
3.
4.
A combined powder and single-crystal X-ray diffraction analysis of dolomite [CaMg(CO3)2] heated to 1,200°C at 3 GPa was made to study the order–disorder–reorder process. The order/disorder transition is inferred to start below 1,100°C, and complete disorder is attained at approximately 1,200°C. Twinned crystals characterized by high internal order were found in samples annealed over 1,100°C, and their fraction was found to increase with temperature. Evidences of twinning domains combined with probable remaining disordered portions of the structure imply that reordering processes occur during the quench. Twin domains are hereby proposed as a witness to thermally induced intra-layer-type cation disordering.  相似文献   
5.
We investigated the high-pressure behaviour of Fe3+-bearing hydrous phase-X, (K1.307Na0.015)(Mg1.504Fe 0.373 3+ Al0.053Ti 0.004 4+ )Si2O7H0.36, up to 34?GPa at room temperature by synchrotron X-ray powder diffraction. The lattice parameters behave anisotropically, with the [001] direction stiffer than [100]. In the 10?4 to 22?GPa pressure range, the axial bulk moduli are K 0a ?=?112(3) GPa and K′?=?4, and K 0c ?=?158(2) GPa and K′?=?4, and the anisotropy of the lattice parameters is β0c 0a ?=?0.71:1. The cell volumes are fitted by a second-order Birch–Murnaghan equation of state giving a bulk modulus of K 0?=?127(1) GPa and K′?=?4 in the same pressure range. After 22?GPa, a discontinuity in volume and lattice parameters can be recognized. Sample did not become amorphous up to 34?GPa. The coupled substitution K?+?Mg?=?[]?+?Fe3+ has only a limited influence on the bulk modulus and structural stability of phase-X.  相似文献   
6.
The compressibility and structure of a 2M1 paragonite with composition [Na0.88K0.10Ca0.01Ba0.01] [Al1.97Ti0.007Fe0.01Mn0.002Mg0.006]Si3.01Al0.99O10OH2 were determined at pressures between 1 bar and 41 kbar, by single crystal X-ray diffraction using a Merrill-Bassett diamond anvil cell. Compressibility turned out to be largely anisotropic, linear compressibility coefficients parallel to the unit cell edges being βa=3.5(1)·10?4, βb=3.6(1)·10?4, βc=8.3(3)·10?4 kbar?1ab·βc=1:1028:2.371). The isothermal bulk modulus, calculated as the reciprocal of the mean compressibility of the cell volume, was 650(20) kbar. The main features of the deformation mechanism resulting from structural refinements at pressures of 0.5, 25.4, 40.5 kbar were: –?variation in sheet thickness, showing that compression of the c parameter was mainly due to the interlayer thickness reduction from 3.07 Å at 0.5 kbar to 2.81 Å at 40.5 kbar; –?the compressibility of octahedra was greater than that of tetrahedra, the dimensional misfit between tetrahedral and octahedral sheets increased with P, so that tetrahedral rotation angel α increased from 15° at 0.5 kbar to 21.6° at 40.5 kbar; –?the basal surface corrugation (Δz) of the tetrahedral layer, due to the different dimensions of M1 and M2 octahedra and to the octahedral distortion, decreased with Pz=0.19 and 0.12 Å at 0.5 and 40.5 kbar respectively). Comparison of the new data on paragonite with those of a K-muscovite and a Na-rich muscovite (Comodi and Zanazzi 1995) revealed a clear trend toward decreasing of compressibility when Na substitutes for K atoms in the interlayer sites.  相似文献   
7.
The response of magnesiochloritoid to pressure has been studied by single crystal X-ray diffraction in a diamond anvil cell, using crystals with composition Mg1.3Fe0.7Al4Si2O10(OH)4. The unit cell parameters decrease from a = 9.434 (3), b = 5.452 (2), c = 18.136 (5) Å, β = 101.42° (2) (1 bar pressure) to a = 9.370 (7), b = 5.419 (5), c = 17.88 (1) Å, β = 101.5° (1) (42 kbar pressure), following a slightly anisotropic compression pattern (linear compressibilities parallel to unit cell edges: β a = 1.85, β b = 1.74, βc = 3.05 × 10?4 kbar?1) with a bulk modulus of 1480 kbar. Perpendicular to c, the most compressible direction, the crystal structure (space group C2/c) consists of two kinds of alternating octahedral layers connected via isolated SiO4 tetrahedra. With increasing pressure the slightly wavy layer [Mg1.3Fe0.7AlO2(OH)4] tends to flatten. Furthermore, the octahedra in this layer, with all cations underbonded, are more compressible than the octahedra in the (A13O8) layer with slightly overbonded aluminum. Comparison between high-pressure and high-temperature data yields the following equations: $$\begin{gathered} a_{P,T} = 9.434{\text{ }}{\AA} - 174 \cdot 10^{ - 5} {\text{ }}{\AA}{\text{kb}}^{{\text{ - 1}}} \cdot P \hfill \\ {\text{ }} + 9 \cdot 10^{ - 5} {\text{ }}{\AA}^\circ C^{ - 1} \cdot (T - 25^\circ C) \hfill \\ b_{P,T} = 5.452{\text{ }}{\AA} - 95 \cdot 10^{ - 5} {\text{ }}{\AA}{\text{kb}}^{{\text{ - 1}}} \cdot P \hfill \\ {\text{ }} + 5 \cdot 65 \cdot 10^{ - 5} {\text{ }}{\AA}^\circ C^{ - 1} \cdot (T - 25^\circ C) \hfill \\ c_{P,T} = 18.136{\text{ }}{\AA} - 549 \cdot 10^{ - 5} {\text{ }}{\AA}{\text{kb}}^{{\text{ - 1}}} \cdot P \hfill \\ {\text{ }} + 16 \cdot 2^{ - 5} {\text{ }}{\AA}^\circ C^{ - 1} \cdot (T - 25^\circ C) \hfill \\ \end{gathered} $$ with P in kbar and T in °C. These equations indicate that the unit cell and bond geometry of magnesiochloritoid at formation conditions do not differ greatly from those at the outcrop conditions, e.g. the calculated unitcell volume is 917.3 Å3 at P = 16 kbar and T=500 °C, whereas the observed volume at room conditions is 914.4 Å3. In addition, they show that the specific gravity increases from formation at depth to outcrop at surface conditions.  相似文献   
8.
 High-pressure Raman investigations were carried out on a synthetic fluorapatite up to about 7 GPa to analyse the behaviour of the phosphate group's internal modes and of its lattice modes. The Raman frequencies of all modes increased with pressure and a trend toward reduced splitting was observed for the PO4-stretching modes [(ν3a(Ag) and ν3b(Ag); ν3a(E2g) and ν3b(E2g)] and the PO4 out-of-plane bending modes [ν4a(Ag) and ν4b(Ag)]. The pressure coefficients of phosphate modes ranged from 0.0047 to 0.0052 GPa−1 for ν3, from 0.0025 to 0.0044 GPa−1 for ν4, from 0.0056 to 0.0086 GPa−1 for ν2 and 0.0046 for ν1 GPa−1, while the pressure coefficients of lattice modes ranged from 0.0106 to 0.0278 GPa−1. The corresponding Grüneisen parameters varied from 0.437 to 0.474, 0.428, 0.232 to 0.409 and 0.521 to 0.800 for phosphate modes ν3, ν1, ν4, ν2, respectively, and from 0.99 to 2.59 for lattice modes. The vibrational behaviour was interpreted in view of the high-pressure structural refinement performed on the same crystal under the same experimental conditions. The reduced splitting may thus be linked to the reduced distortion of the environment around the phosphate tetrahedron rather than to the decrease of the tetrahedral distortion itself. Moreover, the amount of calcium polyhedral compression, which is about three times the compression of phosphate tetrahedra, may explain the different Grüneisen parameters. Received: 25 April 2000 / Accepted: 20 December 2000  相似文献   
9.
 The crystal structure of a synthetic Rb analog of tetra-ferri-annite (Rb–TFA) 1M with the composition Rb0.99Fe2+ 3.03(Fe3+ 1.04 Si2.96)O10.0(OH)2.0 was determined by the single-crystal X-ray diffraction method. The structure is homooctahedral (space group C2/m) with M1 and M2 occupied by divalent iron. Its unit cell is larger than that of the common potassium trioctahedral mica, and similar lateral dimensions of the tetrahedral and octahedral sheets allow a small tetrahedral rotation angle α=2.23(6)°. Structure refinements at 0.0001, 1.76, 2.81, 4.75, and 7.2 GPa indicate that in some respects the Rb–TFA behaves like all other micas when pressure increases: the octahedra are more compressible than the tetrahedra and the interlayer is four times more compressible than the 2:1 layer. However, there is a peculiar behavior of the tetrahedral rotation angle α: at lower pressures (0.0001, 1.76, 2.81 GPa), it has positive values that increase with pressure [from 2.23(6)° to 6.3(4)°] as in other micas, but negative values −7.5(5)° and −8.5(9)° appear at higher pressures, 4.75 and 7.2 GPa, respectively. This structural evidence, together with electrostatic energy calculations, shows that Rb–TFA has a Franzini A-type 2:1 layer up to at least 2.81 GPa that at higher pressure yields to a Franzini B-type layer, as shown by the refinements at 4.75 and 7.2 GPa. The inversion of the α angle is interpreted as a consequence of an isosymmetric displacive phase transition from A-type to B-type structure between 2.81 and 4.75 GPa. The compressibility of the Rb–TFA was also investigated by single-crystal X-ray diffraction up to a maximum pressure of 10 GPa. The lattice parameters reveal a sharp discontinuity between 3.36 and 3.84 GPa, which was associated with the phase transition from Franzini-A to Franzini-B structure. Received: 21 October 2002 / Accepted: 25 February 2003  相似文献   
10.
 The lattice constants of paragonite-2M1, NaAl2(AlSi3)O10(OH)2, were determined to 800 °C by the single-crystal diffraction method. Mean thermal expansion coefficients, in the range 25–600 °C, were: αa = 1.51(8) × 10−5, αb = 1.94(6) × 10−5, αc = 2.15(7) ×  10−5 °C−1, and αV = 5.9(2) × 10−5 °C−1. At T higher than 600 °C, cell parameters showed a change in expansion rate due to a dehydroxylation process. The structural refinements of natural paragonite, carried out at 25, 210, 450 and 600 °C, before dehydroxylation, showed that the larger thermal expansion along the c parameter was mainly due to interlayer thickness dilatation. In the 25–600 °C range, Si,Al tetrahedra remained quite unchanged, whereas the other polyhedra expanded linearly with expansion rate proportional to their volume. The polyhedron around the interlayer cation Na became more regular with temperature. Tetrahedral rotation angle α changed from 16.2 to 12.9°. The structure of the new phase, nominally NaAl2 (AlSi3)O11, obtained as a consequence of dehydroxylation, had a cell volume 4.2% larger than that of paragonite. It was refined at room temperature and its expansion coefficients determined in the range 25–800 °C. The most significant structural difference from paragonite was the presence of Al in fivefold coordination, according to a distorted trigonal bipyramid. Results confirm the structural effects of the dehydration mechanism of micas and dioctahedral 2:1 layer silicates. By combining thermal expansion and compressibility data, the following approximate equation of state in the PTV space was obtained for paragonite: V/V 0 = 1 + 5.9(2) × 10−5 T(°C) − 0.00153(4) P(kbar). Received: 12 July 1999 / Revised, accepted: 7 December 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号