首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
大气科学   1篇
地质学   2篇
海洋学   1篇
  2019年   1篇
  2015年   1篇
  2013年   1篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The results obtained from an Ocean General Circulation Model (OGCM), the Modular Ocean Model 2.2, forced with the National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis data, and observational data have been utilized to document the climatological seasonal cycle of the upper ocean response in the Tropical Indian Ocean. We address the various roles played by the net surface heat flux and the local and remote ocean dynamics for the seasonal variation of near-surface heat budget in the Tropical Indian Ocean. The investigation is based in seven selected boxes in the Arabian Sea, Bay of Bengal and the Equatorial Indian Ocean. The changes of basin-wide heat budget of ocean process in the Arabian Sea and the Western Equatorial Indian Ocean show an annual cycle, whereas those in the Bay of Bengal and the Eastern Equatorial Indian Ocean show a semi-annual cycle. The time tendency of heat budget in the Arabian Sea depends on both the net surface heat flux and ocean dynamics while on the other hand, that in the Bay of Bengal depends mainly on the net surface flux. However, it has been found that the changes of heat budget are very different between western and eastern regional sea areas in the Arabian Sea and the Bay of Bengal, respectively. This difference depends on seasonal variations of the different local wind forcing and the different ocean dynamics associated with ocean eddies and Kelvin and Rossby waves in each regional sea areas. We also discuss the comparison and the connection for the seasonal variation of near-surface heat budget among their regional sea areas. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
2.
3.
In the context of radioactive waste repository in geological formation, kaolinite-metallic iron interaction in chlorine solution was conducted in batch experiments, under anoxic conditions at 90 °C during 9 months. After a mineralogical characterization at a global scale, products were analyzed at the micrometer and nanometer scales by X-ray absorption spectroscopic techniques (XAS and STXM). Absorption at Al, Si and Fe edges was investigated to have a complete overview of the distribution and status of constituting elements. Whereas Si K-edge results do not evidence significant evolution of silicon status, investigations at Al K-edge and Fe L-edges demonstrate variations at aggregate and particle scales of IVAl:VIAl and Fe2+:Fe3+ ratios. Spectroscopic data evidence the systematic crystallization of Fe-serpentines onto the remaining particles of kaolinite and the absence of pure species (kaolinite or Fe-serpentines). Combination of spatially resolved spectroscopic analyses and TEM-EDXS elemental distribution aims to calculate unit cell formulae of Fe-serpentines layers and abundance of each species in mixed particles. For most of the investigated particles, results reveal that the variations of particles composition are directly linked to the relative contributions of kaolinite and Fe-berthierine in mixed particles. However, for some particles, microscale investigations evidence crystallization of two other Fe-serpentines species, devoid of aluminum, cronstedtite and greenalite.  相似文献   
4.
Ansa Thasneem  S.  Chithra  N. R.  Thampi  Santosh G. 《Natural Hazards》2019,98(3):1169-1190
Natural Hazards - This study investigated the variation of extreme precipitation on a catchment under climate change. Extreme value analysis using generalized extreme value distribution was used to...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号