首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
大气科学   2篇
地质学   2篇
天文学   1篇
  2021年   1篇
  2012年   1篇
  2009年   1篇
  1985年   1篇
  1974年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
Total hours of sunshine are one of the most important factors affecting climate and environment, and its long-term variation is of much concern in climate studies. Trends of temporal and spatial patterns in sunshine hours and related climatic factors over southwestern China are evaluated for the period 1961–2009 based on data from 111 standard meteorological stations. The results showed that southwestern China is experiencing a statistical decrease of sunshine hours, at the rate of 31.9 h/10a during 1961–2009. The decline was particularly strong in summer, whereas it is nonsignificant in winter. Spatially, statistically significant decreases of sunshine hours mainly occurred in lower altitude regions, especially in the Sichuan basin and Guizhou plateau. Sunshine hours have a high correlation with wind speed, relative humidity, precipitation, cloud cover, surface downwards solar radiation flux, and cloud water content, with wind speed showing the strongest relationship to sunshine hours, implicit in the close correlation (temporally and spatially) between the two variables. Changing water vapor and cloud cover influence sunshine hours in southwestern China. In addition, the increased surface downwards solar radiation flux also made some contribution to a rise of sunshine hours during 1991–2009. The larger decreasing trends of sunshine hours at urban stations than rural stations may reflect the effect of urbanization on sunshine hours. Variations are dominated by the comprehensive functions of multiple factors owing to the complex nature of effects on sunshine hours.  相似文献   
3.
Climate Dynamics - In the original published version of the paper, the figures reported in Sect. 4 relating the proportion of rainfall in southern Australia that is due to each of the...  相似文献   
4.
5.
The steady state interaction of the solar wind with the Moon is modeled as a uniform, magnetized, quasi-neutral, collisionless, hypersonic, and hyper-Alfvénic flow of an electronproton plasma past a perfectly ion absorbing, non-magnetized sphere. For the temperature of the electronsT much less than that of the ionsT i , steady state equations are derived self-consistently from the Vlasov and Maxwell equations by taking advantage of the fact that the ion gyration ratio is small compared to the radius of the Moon, by employing an ordering which requires different scale lengths along the magnetic fieldB and center of mass velocity, and by expanding in a small parameter ? that measures the smallness of ?B terms compared to a dominant term retained. A partial numerical solution is presented and discussed for the limit in which ? is much less than β=(ion pressure/magnetic pressure). In addition, a simple technique is presented whereby the steady state equations can be approximately extended to cases in whichT?T i for arbitrary ?/β.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号