首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
测绘学   1篇
地球物理   1篇
地质学   5篇
海洋学   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
  1985年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
One of the two objectives of the Vemanaute cruise of the French deep submersible Nautile, was the geological study of the eastern intersection area between the Mid-Atlantic Ridge (MAR) and the Vema Fracture Zone in the equatorial Atlantic. Fourteen dives were conducted that allowed detailed geological survey and sampling of the main morphostructural units of this area: the northern and southern walls of the fracture zone, the median ridge, the northern and southern troughs and the nodal basin. In situ observations of recent tectonic features such as furrows, ridges and circular depressions, concentrated within the southern trough, allowed us to establish the location and the size of the present-day displacement zone. Geological investigations have shown that the nodal basin is entirely floored by basalts thus contrasting with other equivalent areas such as the Kane and Oceanographer fracture zone-MAR eastern intersections. Finally, this study stresses the great opposition between the relatively old and tectonically inactive northern part of the fracture, and the southern part which shows active tectonics and recent volcanic activity.  相似文献   
2.
This study aimed at reconstructing the sequence of events in the magmatic and metamorphic evolution of peridotites, gabbroids, and trondhjemites of the oceanic core complexes of the Ashadze and Logachev hydrothermal vent fields. The study object was the collections of plutonic rocks made during cruises 22 and 26 of the R/V Professor Logachev, Cruise 41 of the R/V Akademik Mstislav Keldysh, and the Russian-French expedition Serpentine aboard the R/V Pourquoi pas? The data reported here suggest that the oceanic core complexes of the Ashadze and Logachev fields were formed via the same scenario in the two MAR regions. On the other hand, the analysis of petrological and geochemical characteristics of the rocks indicated that the oceanic core complexes of the MAR axial zone between 12°58′ and 14°45′N show a pronounced petrological and geochemical heterogeneity manifested in variations in the degree of depletion of mantle residues and the Nd isotopic compositions of the rocks of the gabbro-peridotite association. The trondhjemites of the Ashadze hydrothermal field can be considered as partial melting products of gabbroids under the influence of hydrothermal fluid. It was supposed that the presence of trondhjemites in the MAR oceanic core complexes can be used as a marker for the highest temperature deep-rooted hydrothermal systems. Perhaps, the region of the MAR axial zone in which petrologically and geochemically contrasting oceanic core complexes are spatially superimposed served as sites for the development of large hydrothermal clusters with a considerable ore-forming potential.  相似文献   
3.
Decades of cruise-based exploration have provided excellent snapshots of the structure of mid-ocean ridges and have revealed that accretion is a mixture of steady-state and quantum events. Observatory-type studies are now needed to quantify the temporal evolution of these systems. A multi-disciplinary seafloor observatory site is currently being set up at the Lucky Strike volcano, in the axial valley of the slow spreading Mid-Atlantic ridge as a part of the MoMAR (monitoring of the Mid-Atlantic Ridge) initiative. The aim of this observatory is to better understand the dynamics of the volcano and the hydrothermal vents hosted at its summit as well as their plumbing systems. In August 2006, the GRAVILUCK cruise initiated an experiment to monitor the deformation of Lucky Strike volcano. A geodetic network was installed, and seafloor pressure, gravity and magnetic data were collected. In this paper, we present the method used to monitor volcanic deformation, which involves measuring relative depth difference between points within a seafloor geodesy network. We show that, taking into account oceanographic variability and measurement noise, the network should be able to detect vertical deformations of the order of 1 cm.  相似文献   
4.
Quartz microstructures and fabrics in the southeastern part of the island of Groix developed during the last stages of the Palaeozoic synmetamorphic deformation. The zonation of the quartz microstructures in map view suggests an upward positive gradient of strain. The plastic flow plane in quartz found in folds with axes aligned parallel to the stretching lineation, is parallel to the axial planes of the folds. The dominant regional sense of shear, as deduced from quartz fabrics, corresponds to the northward displacement of the upper block. This sense of displacement supports the hypothesis made by previous workers that the synmetamorphic deformation in Groix occurred in a N-directed intra-lithospheric thrust rather than in a N-dipping subduction zone. Quartz c-axis patterns argue for the distinction of two synmetamorphic phases with different transport directions. The transition between these two phases is thought to have occurred progressively during the course of the thrusting.  相似文献   
5.
We study the relationships between the seafloor structures and the axial magma chamber geometry in the 9°N overlapping spreading center (OSC) area on the fast spreading East Pacific Rise (EPR). Our observations are based on a new high resolution bathymetric map of the 9°N OSC area derived from picks of the seafloor arrival on 3D seismic data, and on previously published data that constrain the presence and distribution of melt below the 9°N OSC. Differences in the orientation of structures between the seafloor and the magma chamber indicate a sharp change in principal stress directions with depth, suggesting that the brittle crust above the melt sill is decoupled from the melt sill itself and the ductile crust underlying it. The stress-field within the brittle upper crust results from a local interaction of the two overlapping spreading centers, whereas the stress-field in the crust below the melt sill corresponds to the regional stress-field imposed by plate separation. Given this mechanical structure of the crust, the melt sill shape and location appear to be controlled by the following factors: the location of the deep melt source below the melt sill, the ambient stress-field at the depth of the melt sill, and the stress-field in the brittle upper crust above the melt sill, which thermally shapes the roof of the melt sill through repeated eruptions.  相似文献   
6.
 Peridotites, dykes and gabbros from the 470–420 Ma Trinity Ophiolite Complex of northern California exhibit large geochemical rare earth element (REE) and Nd isotopic variations on the small scales which are indicative of a complex history. The Trinity Ophiolite, which covers an area of ≈1600 km2, consists of three distinct units: (1) a ∼2–4 km-thick sheet of plastically deformed peridotites, including various ultrabasic lithologies (plagioclase and spinel lherzolite, harzburgite, wherlite and dunite); the peridotite unit is a fragment of mantle lithosphere of oceanic affinity; (2) a series of small (∼1 km diameter) undeformed gabbroic massifs; (3) several generations of basic dykes. The peridotites display the largest geochemical and isotopic variations, with ɛNd(T) values ranging from +10 down to 0. In the gabbroic massifs and intrusive dykes, the variation in model ɛNd(T) values is reduced to 7 ɛNd units: 0 to +7. As a general rule, peridotites, gabbros and dykes with ɛNd(T) values around 0 or +3 give less depleted L(light)REE patterns than do those with ɛNd(T) values in the range +7 to +10. In the peridotites, the Nd isotopic variations take place over very short distances, with jumps as large as 7 ɛNd units occurring on scales of less than 20 m. Comparison with available age data indicates that the peridotites with ɛNd(T)≈+10 could be slightly older than the intrusive gabbro massifs and basic dykes (470 Ma vs. 420 Ma). Strontium isotopic data used in connection with Sm-Nd results demonstrate that the 10 ɛNd units variation displayed by the Trinity Peridotite is a primary feature and not an artefact due to REE mobility during seawater interaction. The variable Nd isotopic signatures and variable LREE patterns in the Trinity Peridotite cannot represent mantle source characteristics as there is evidence that this unit was partially melted when it rose as part of the upwelling convecting mantle. Field, petrographic, geochemical and isotopic data rather suggest that the observed heterogeneity is due to local reactions between a 470 Ma proto-peridotite with ɛNd(T)=+10 and younger (420 Ma) basaltic melts with lower ɛNd(T) values (i.e. the gabbroic massifs and the dykes). The gabbros and basic dykes of the Trinity Complex have geochemical and isotopic compositions similar to the arc basalts from the adjacent Copley Formation, so it is proposed that the younger melts are related to arc magmatism. Received: 13 January 1995/Accepted 5 May 1995  相似文献   
7.
The crust at mid-ocean ridges is formed through a combination of magmatic and tectonic processes. Along slow-spreading ridges, magmatism is inferred to be discontinuous and episodic, and lithospheric faulting may strongly interact with the melt supply system. These interactions can be studied for the first time at the Lucky Strike segment along the Mid-Atlantic Ridge (MAR), where a 3.4 km deep magma chamber (AMC) extending ~6 km along-axis is found at its centre (Singh et al. in Earth Planet Sci Lett 246:353–366, 2006). With an array of ocean bottom seismometers we have detected along this ridge segment approximately 400 microseismic events during a total of 6 days, and located 71 of them, whose local magnitudes ranged from 0.2 to 1.8. While most of the events were concentrated at non-transform offset and inside corners, three events with well-constrained locations were detected beneath the central volcano and at the edges of the AMC. Two of the microearthquakes, which occur in a brittle lithosphere and therefore at temperatures lower than 750°C, are deeper than the AMC and therefore very steep thermal gradients both along- and across-axis. Regionally seismicity deepens from ~6 km at the segment center to >10 km towards the ends.  相似文献   
8.
The objective of the 20 Nautile dives of the recent Kanaut cruise was to study the southern wall of the Kane Fracture Zone from its eastern intersection with the Mid-Atlantic Ridge (MAR) to 5 Myr in age. The geological mapping shows four successive massifs, wrench faulted and slightly tilted. The transform-facing walls of these massifs exhibit outcrops of fresh and serpentinized peridotites, gabbros and basalts. The entire crustal exposure is cataclased and metamorphosed to greenschist facies.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号