首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   4篇
  国内免费   3篇
大气科学   2篇
地球物理   11篇
地质学   38篇
海洋学   3篇
天文学   1篇
综合类   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2015年   2篇
  2014年   4篇
  2013年   16篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2007年   3篇
  2006年   3篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1987年   2篇
  1986年   1篇
  1978年   1篇
排序方式: 共有56条查询结果,搜索用时 234 毫秒
1.
Monazite electron microprobe U–Th–Pb and garnet Sm–Nd isotopic data from metapelitic assemblages in the Willyama Supergroup in the southern Curnamona Province, south‐central Australia, indicate that the terrain underwent regional greenschist to amphibolite‐grade metamorphism during the c. 500 Ma Delamerian Orogeny. The Delamerian‐aged mineral assemblages include prograde garnet–staurolite and kyanite‐bearing associations that overprint andalusite‐ and sillimanite‐bearing assemblages that are interpreted to have developed during the c. 1600 Ma Olarian Orogeny. Importantly, the development of secondary kyanite‐bearing assemblages in the southern Curnamona Province has been used previously to suggest that the Olarian Orogeny followed an anticlockwise PT evolution. If such assemblages are the product of c. 500 Ma metamorphism, then the anticlockwise PT path is an apparent path, due to the overprint of a distinct metamorphic cycle c. 1100 Ma later. Making such distinctions is therefore extremely important when using the textural and metamorphic evolution of polycyclic terrains to model the thermal behaviour of the crust during orogeny. This study highlights the utility of in situ geochronology, linking age data to petrologically important phases and assemblages.  相似文献   
2.
Ultrahigh temperature (UHT) granulites in the Eastern Ghats Province (EGP) have a complex P–T–t history. We review the P–T histories of UHT metamorphism in the EGP and use that as a framework for investigating the P–T–t history of Mg–Al‐rich granulites from Anakapalle, with the express purpose of trying to reconcile the down‐pressure‐dominated P–T path with other UHT localities in the EGP. Mafic granulite that is host to Mg–Al‐rich metasedimentary granulites at Anakapalle has a protolith age of c. 1,580 Ma. Mg–Al‐rich metasedimentary granulites within the mafic granulite at Anakapalle were metamorphosed at UHT conditions during tectonism at 960–875 Ma, meaning that the UHT metamorphism was not the result of contact metamorphism from emplacement of the host mafic rock. Reworking occurred during the Pan‐African (c. 600–500 Ma) event, and is interpreted to have produced hydrous assemblages that overprint the post‐peak high‐T retrograde assemblages. In contrast to rocks elsewhere in the EGP that developed post‐peak cordierite, the metasedimentary granulites at Anakapalle developed post‐peak, generation ‘2’ reaction products that are cordierite‐absent and nominally anhydrous. Therefore, rocks at Anakapalle offer the unique opportunity to quantify the pressure drop that occurred during so‐called M2 that affected the EGP. We argue that M2 is either a continuation of M1 and that the overall P–T path shape is a complex counter‐clockwise loop, or that M1 is an up‐temperature counter‐clockwise deviation superimposed on the M2 path. Therefore, rather than the rocks at Anakapalle having a metamorphic history that is apparently anomalous from the rest of the EGP, we interpret that other previously studied localities in the EGP record a different part of the same P–T path history as Anakapalle, but do not preserve a significant record of pressure decrease. This is due either to the inability of refractory rocks to extensively react to produce a rich mineralogical record of pressure decrease, or because the earlier high‐P part of the rocks history was erased by the M1 loop. Irrespective of the specific scenario, models for the tectonic evolution of the EGP must take the substantial pressure decrease during M2 into account, as it is probable the P–T record at Anakapalle is a reflection of tectonics affecting the entire province.  相似文献   
3.
The small, burrowing, edwardsiid sea anemone Nematostella vectensis is widely distributed in estuaries and bays. Most typically it occurs in pools in marshes though it may occur subtidally as well. We have compiled records of its occurrence in North America from Nova Scotia to Georgia along the shores of the Atlantic Ocean, from Florida to Louisiana in the Gulf of Mexico and from California to Washington on the Pacific coast. To date we have found no records of its presence in Alabama or Texas, though it is present in all other of the contiguous coastal states of the United States. The species also occurs in England. We have obtained living specimens from many locations and have crossed females from England, Maryland, Georgia, California, Oregon, and Washington with males from Nova Scotia, Maryland, Georgia, and Oregon. These 24 crosses all yielded viable first-generation anemones that in turn produced second-generation animals. We accept this as proof that this widely distributed anemone is a single species. We have obtained living N. vectensis from 11 areas. Of these, only samples from Maine, Maryland, Georgia, and Oregon contained both sexes. The sample from Nova Scotia was all male and our samples from England, New Hampshire, California, and Washington were all female. We hypothesize that the unisexual samples were from clones resulting from asexual reproduction in this species. *** DIRECT SUPPORT *** A01BY066 00015  相似文献   
4.
The structures and microstructures of the Takanuki and Hitachi areas in the Abukuma massif, Northeast Japan are described. In the Takanuki area, the basic Gosaisho series thrusts the pelitic Takanuki ones in a HP metamorphic context. The nappe structure is afterwards refolded by a migmatitic dome: the Samegawa dome, in a HT metamorphic context. Microtectonic analysis shows that the nappe was transported from south to north along the stretching lineation. Geometric features suggest that the Samegawa dome was emplaced by diapirism. The role of the thrust surface as an instable interface promoting the doming is emphasized. The Hitachi metamorphic rocks composed of basic schist, limestone and sandstone shist thrust the pelitic rocks of the western Hitachi gneisses. As for the Takanuki area, the thrusting occurred in ductile synmetamorphic conditions with a north or northeastward displacement. Owing to lithologic, petrologic, structural similitudes, the nappe of the Hitachi metamorphic rocks and that of the Gosaisho series are unified into a unique nappe with a northward motion. The emplacement occurred between late Permian and late Cretaceous likely in late Jurassic. The allochthonous units of the Abukuma massif are correlated with the Green Schist nappe described in Southwest Japan, since they are surrounded by the same zones, namely the Tanba zone and the Kurosegawa-Kitakami one. Moreover both in Southwest and Northeast Japan, the emplacement of the Green Schist nappes is due to a shear deformation inducing rotational structures along the stretching lineation indicating the same sense of transport, that is eastward in Southwest Japan and northward in Northeast Japan, owing to the late bending of the Japanese Islands. The late Jurassic nappe structure is obliquely overprinted by a HT metamorphism, Ryoke in Southwest Japan, Abukuma in Northeast Japan, and afterwards cut by late faults as the Median Tectonic Line or the Tanakura fault, giving rise to the present complexity.  相似文献   
5.
6.
Simulated response to inter-annual SST variations in the Gulf Stream region   总被引:1,自引:1,他引:0  
Recent studies show that mid-latitude SST variations over the Kuroshio-Oyashio Extension influence the atmospheric circulation. However, the impact of variations in SST in the Gulf Stream region on the atmosphere has been less studied. Understanding the atmospheric response to such variability can improve the climate predictability in the North Atlantic Sector. Here we use a relatively high resolution (~1°) Atmospheric General Circulation Model to investigate the mechanisms linking observed 5-year low-pass filtered SST variability in the Gulf Stream region and atmospheric variability, with focus on precipitation. Our results indicate that up to 70 % of local convective precipitation variability on these timescales can be explained by Gulf Stream SST variations. In this region, SST and convective precipitation are strongly correlated in both summer (r = 0.73) and winter (r = 0.55). A sensitivity experiment with a prescribed local warm SST anomaly in the Gulf Stream region confirms that local SST drives most of the precipitation variability over the Gulf Stream. Increased evaporation connected to the anomalous warm SST plays a crucial role in both seasons. In summer there is an enhanced local SLP minimum, a concentrated band of low level convergence, deep upward motion and enhanced precipitation. In winter we also get enhanced precipitation, but a direct connection to deep vertical upward motion is not found. Nearly all of the anomalous precipitation in winter is connected to passing atmospheric fronts. In summer the connection between precipitation and atmospheric fronts is weaker, but still important.  相似文献   
7.
The quarry at Kottavattom in the Trivandrum Block of southern India contains spectacular examples of fluid-assisted alteration of high-grade metamorphic rocks. Garnet-biotite gneiss has undergone a change in mineral assemblage to form submetre scale orthopyroxene-bearing patches, later retrogressed to form an amphibole-bearing lithology. These patches, often referred to as arrested or incipient charnockite, crosscut the original metamorphic foliation and are typically attributed to passage of a low aH2O fluid through the rock. Whilst this conversion is recognised as a late stage process, little detailed chronological work exists to link it temporally to metamorphism in the region. Zircon and monazite analysed from Kottavattom not only record metamorphism in the Trivandrum Block but also show internal, lobate textures crosscutting the original zoning, consistent with fluid-aided coupled dissolution-reprecipitation during formation of the orthopyroxene-bearing patches. High-grade metamorphism at the quarry occurred between the formation of metamorphic monazite at ~585 Ma and the growth of metamorphic zircon at ~523 Ma. The fluid-assisted alteration of the garnet-biotite gneiss is poorly recorded by altered zircon with only minimal resetting of the U–Pb system, whereas monazite has in some cases undergone complete U–Pb resetting and records an age for fluid infiltration at ~495 Ma. The fluid event therefore places the formation of the altered patches at least 25 Myr after the zircon crystallisation in the garnet-biotite gneiss. The most likely fluid composition causing the modification and U–Pb resetting of zircon and monazite is locally derived hypersaline brine.  相似文献   
8.
9.
Résumén

Dans certaines régions où les sédiments récents (plio-quaternaires) sont rares ou inutilisables comme enregistreurs de déformations, seule l’analyse morpho-strcturale peut mettre en évidence des indices de néotectonique. Deux types d’objets morphologiques se révèlent particulièrement utiles : les surfaces (d’érosion et de comblement) et le réseau hydrographique. Leur prise en compte et leur analyse s’effectuent essentiellement à partir des cartes topographiques à différentes échelles (de 1/50 000 à 1/500 000).

* La démarche est la suivante: 1 – Des traitements appropriés sont développés, mettant en évidence des discontinuités et des anomalies au sein des surfaces enveloppes et du réseau hydrographiques;

2 – Ces discontinuités sont analysées puis interprétées afin de déterminer les causes de leur existence dans le cadre d’un modèle d’évolution du relief qui tient compte de facteurs internes (la lithologie, la structure), et de facteurs externes (le climat, la végétation et les actions humaines);

3 – Des travaux de terrain confirment et précisent les caractéristiques de ces facteurs (nature et quantification de la déformation : âge. amplitude, sens des mouvements).

* Les principaux résultats de cette démarche appliquée à l’Kst du Bassin parisien sont les suivants: 1 – Les cuestas orientales du Bassin parisien apparaissent structurées par des accidents NK-SW (prolongement du fossé de Sarre Nahe) et NNW-SSK ( Argonne-Bar-le-Due);

2 – Les discontinuités morpho-structurales sont localisées et caractérisées par des mouvements récents.

  相似文献   
10.
Exhumed eclogitic crust is rare and exposures that preserve both protoliths and altered domains are limited around the world. Nominally anhydrous Neoproterozoic anorthositic granulites exposed on the island of Holsnøy, in the Bergen Arcs in western Norway, preserve different stages of progressive prograde deformation, together with the corresponding fluid‐assisted metamorphism, which record the conversion to eclogite during the Ordovician–Silurian Caledonian Orogeny. Four stages of deformation can be identified: (1) brittle deformation resulting in the formation of fractures and the generation of pseudotachylites in the granulite; (2) development of mesoscale shear zones associated with increased fluid–rock interaction; (3) the complete large‐scale replacement of granulite by hydrous eclogite with blocks of granulite sitting in an eclogitic “matrix”; and (4) the break‐up of completely eclogitized granulite by continued fluid influx, resulting in the formation of coarse‐grained phengite‐dominated mineral assemblages. P–T constraints derived from phase equilibria forward modelling of mineral assemblages of the early and later stages of the conversion to eclogite document burial and partial exhumation path with peak metamorphic conditions of ~21–22 kbar and 670–690°C. The P–T models, in combination with existing T–t constraints, imply that the Lindås Nappe underwent extremely rapid retrogressive pressure change. Fluid infiltration began on the prograde burial path and continued throughout the recorded P–T evolution, implying a fluid source that underwent progressive dehydration during subduction of the granulites. However, in places limited fluid availability on the prograde path resulted in assemblages largely consuming the available fluid, essentially freezing in snapshots of the prograde evolution. These were carried metastably deeper into the mantle with strain and metamorphic recrystallization partitioned into areas where ongoing fluid infiltration was concentrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号