首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   1篇
  国内免费   9篇
大气科学   7篇
地球物理   1篇
地质学   27篇
海洋学   1篇
天文学   8篇
自然地理   9篇
  2022年   2篇
  2021年   3篇
  2018年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1979年   1篇
  1967年   1篇
排序方式: 共有53条查询结果,搜索用时 31 毫秒
1.
The Walter‐Outalpa shear zone in the southern Curnamona Province of NE South Australia is an example of a shear zone that has undergone intensely focused fluid flow and alteration at mid‐crustal depths. Results from this study have demonstrated that the intense deformation and ductile shear zone reactivation, at amphibolite facies conditions of 534 ± 20 °C and 500 ± 82 MPa, that overprint the Proterozoic Willyama Supergroup occurred during the Delamerian Orogeny (c. 500 Ma) (EPMA monazite ages of 501 ± 16 and 491 ± 19 Ma). This is in contrast to the general belief that the majority of basement deformation and alteration in the southern Curnamona Province occurred during the waning stages of the Olarian Orogeny (c. 1610–1580 Ma). These shear zones contain hydrous mineral assemblages that cut wall rocks that have experienced amphibolite facies metamorphism during the Olarian Orogeny. The shear zone rock volumes have much lower δ18O values (as low as 1‰) than their unsheared counterparts (7–9‰), and calculated fluid δ18O values (5–8‰) consistent with a surface‐derived fluid source. Hydrous minerals show a decrease in δD(H2O) from ?14 to ?22‰, for minerals outside the shear zones, to ?28 to ?40‰, for minerals within the shear zones consistent with a contribution from a meteoric source. It is unclear how near‐surface fluids initially under hydrostatic pressure penetrate into the middle crust where fluid pressures approach lithostatic, and where fluid flow is expected to be dominantly upward because of pressure gradients. We propose a mechanism whereby faulting during basin formation associated with the Adelaidean Rift Complex (c. 700 Ma) created broad hydrous zones containing mineral assemblages in equilibrium with surface waters. These panels of fault rock were subsequently buried to depths where the onset of metamorphism begins to dehydrate the fault rock volumes evolving a low δ18O fluid that is channelled through shear zones related to Delamerian Orogenic activity.  相似文献   
2.
3.
REPLY     
  相似文献   
4.
The Kinsman Intrusive Suite occurs in six major plutons of westernNew Hampshire, covering a total area of 2240 km2. It is an Acadian-agesyntectonic gneissic S-type peraluminous granitoid, rangingin composition from quartz diorite to granite. Much of the Kinsmanis characterized by very large (up to 120 mm in maximum dimension)megacrysts of alkali feldspar, but the bulk chemistry of therocks indicates that these cannot be phenocrysts crystallizedfrom initially homogeneous melts. Locally, there is abundant(20 per cent) almandine-rich garnet, and graphite is a commonaccessory.In contrast to the unannealed orthoclase in surroundingmetapelites, the alkali feldspar of the Kinsman has, for themost part, inverted to maximum microcline. The garnets havecore temperatures in the range of 800 to 900 ?C, and are pseudomorphedby, or show reaction rims to, biotite. Plagioclase commonlyshows zoning, some of it oscillatory. These features are magmaticin nature, and argue against the conclusions of previous investigatorsthat the mineralogy and textures of the rock are due to regionalmetamorphism of a previously-crystallized two-mica granitoidwhich has undergone prograde reactions such as:muse + bio +3 qtz 2 Kfs + gar + 2H2O.The intrusives have also producedrecognizable contact-metamorphic features in the wallrocks andare probably coeval with the dominant M2 Acadian metamorphism.Majorelement analytical data for the Kinsman suite has been examinedby least squares mixing-model and extended Q-mode factor analysis.These calculations, supported by consideration of REE data,suggest that the most likely origin for the Kinsman magmas isby deep-crustal anatexis of slightly calcareous metapelites,and involves a reaction such as:bio + Al2SiO5 + qtz + feldspars gar + cord + Kfs + plag + melt.In non-calcareous pelites thisreaction produces a water-undersaturated peraluminous melt attemperatures above 700 ?C, and allows for the early crystallizationor recrystallization of K-feldspar, plagioclase, and garnetin a crystal-liquid mush or migma. Geochemically, garnet + plagioclaseare treated as restite, and a minimum-melt granite as the magmain the Q-mode and mixing-model calculations. The variabilityin chemistry of the Kinsman Intrusive Suite is best explainedon the basis of mixing of leucogranitic anatectic melts withgarnet-plagioclase restitic material and a quartz-feldspar-sillimanite-biotiterock, but only very slightly affected by crystal settling.  相似文献   
5.
Near Williams Lake, in the central interior of British Columbia, the Fraser River exposes long sections of late Pleistocene glaciolacustrine sediments selectively preserved within a bedrock trough. The dominant facies types are thick, normally graded gravels and sands that occupy steeply dipping multistorey channels up to 300 m wide and several tens of metres deep. Channels appear to have been simultaneously cut and filled by high density turbidity currents in a glacial lake floored by stagnant ice. Fining upward sediment gravity flow sequences up to 50 m thick may be the product of quasi-continuous ‘surging’ turbidity flows triggered by catastrophic meltwater discharges into the trough or retrogressive failure of ice-cored sediments. Large-scale post-depositional deformation structures, such as synclinal folds, normal faults, sedimentary dyke swarms and dewatering structures, record gravitational foundering of sediment and pore-water expulsion caused by the melt of underlying glacier ice. Melting of buried ice masses along the floor of the trough appears to have controlled the flow paths of turbidity currents by producing sub-basins within the overlying sediment pile. An idealized model of ‘supraglacial’ lacustrine sedimentation is developed that may be applicable to other glaciated areas with similar bedrock topography.  相似文献   
6.
Abstract– The Opportunity rover of the Mars Exploration Rover mission encountered an isolated rock fragment with textural, mineralogical, and chemical properties similar to basaltic shergottites. This finding was confirmed by all rover instruments, and a comprehensive study of these results is reported here. Spectra from the miniature thermal emission spectrometer and the Panoramic Camera reveal a pyroxene‐rich mineralogy, which is also evident in Mössbauer spectra and in normative mineralogy derived from bulk chemistry measured by the alpha particle X‐ray spectrometer. The correspondence of Bounce Rock’s chemical composition with the composition of certain basaltic shergottites, especially Elephant Moraine (EET) 79001 lithology B and Queen Alexandra Range (QUE) 94201, is very close, with only Cl, Fe, and Ti exhibiting deviations. Chemical analyses further demonstrate characteristics typical of Mars such as the Fe/Mn ratio and P concentrations. Possible shock features support the idea that Bounce Rock was ejected from an impact crater, most likely in the Meridiani Planum region. Bopolu crater, 19.3 km in diameter, located 75 km to the southwest could be the source crater. To date, no other rocks of this composition have been encountered by any of the rovers on Mars. The finding of Bounce Rock by the Opportunity rover provides further direct evidence for an origin of basaltic shergottite meteorites from Mars.  相似文献   
7.
Geology in the Falkland Islands   总被引:2,自引:0,他引:2  
In the next few years we are likely to hear and learn much about the offshore geology of the Falkland Islands as exploratory drilling for hydrocarbons begins. The offshore geology may become better known than the onshore, of which there has been little detailed investigation in the 200+ years since settlements were established. Here we outline the history of geological investigations and present information gathered during recent fieldwork.  相似文献   
8.
A well-preserved moraine on the northern coast of County Donegal, Ireland, has played a critical role in our understanding of the glacial history of this sector of the Irish Ice Sheet (IIS). Because of a lack of numerical dating of the moraine, however, previous interpretations of its age and significance to the glacial history of this region have varied widely. Here we report eight in situ cosmogenic 10Be ages on boulders sampled from the moraine. Two of these ages are outliers, with the remaining six ranging from 18.8±1.0 10Be kyr to 20.9±1.3 10Be kyr, with an uncertainty-weighted mean age of 19.4±0.3 10Be kyr (19.4±1.2 kyr accounting for production rate uncertainty). Our results confirm one previous 10Be age obtained from the moraine, with the combined data ( n =7) constraining the age of initial deglaciation of the IIS from its LGM position on the continental shelf to be 19.3±0.3 10Be kyr (19.3±1.2 kyr accounting for production rate uncertainty). These ages are in excellent agreement with calibrated 14C ages that constrain retreat of the IIS margin from the continental shelf elsewhere in northwestern and western Ireland and the Irish Sea Basin associated with the start of the Cooley Point Interstadial (≥20–≤18.2 cal. kyr BP), suggesting widespread deglaciation of the IIS ∼19.5–20 kyr ago.  相似文献   
9.
Timing of the last deglaciation in Lithuania   总被引:1,自引:1,他引:0  
Boulders from the Grūda Moraine, which is associated with the maximum extent of the Scandinavian Ice Sheet (SIS) during the last glaciation, and the Baltija (also referred to as the South Lithuanian), the Middle and North Lithuanian moraines, which are associated with recessional stages of the SIS, were sampled for surface exposure dating using 10Be. By combining these data with existing radiocarbon ages, we developed a chronology for the retreat of the SIS margin in Lithuania. Our new 10Be ages suggest that the SIS margin began to retreat from its maximum extent at 18.3 ± 0.8 10Be kyr. Based on a probable correlation of the Baltija Moraine with the Pomeranian Moraine in Poland, we infer that the Baltija Moraine was formed following a re-advance of the SIS margin. The ice margin retreated from the Baltija position at 14.0 ± 0.4 10Be kyr. The SIS-margin retreat paused at least two more times to form the Middle Lithuanian Moraine at 13.5 ± 0.6 10Be kyr and the North Lithuanian Moraine (tentatively correlated to the Pajūris Moraine) at 13.3 ± 0.7 10Be kyr. Subsequent ice-margin retreat from the North Lithuanian Moraine represented the final deglaciation of Lithuania. Direct dating of these moraines better constrains the relation of ice-margin positions in Lithuania to those in adjacent countries as well as the SIS response to climate change.  相似文献   
10.
Garnet grains from an intensely metasomatized mid‐crustal shear zone in the Reynolds Range, central Australia, exhibit a diverse assortment of textural and compositional characteristics that provide important insights into the geochemical effects of fluid–rock interaction. Electron microprobe X‐ray maps and major element profiles, in situ secondary ion mass spectrometry oxygen isotope analyses, and U–Pb and Sm–Nd geochronology are used to reconstruct their thermal, temporal and fluid evolution. These techniques reveal a detailed sequence of garnet growth, re‐equilibration and dissolution during intracontinental reworking associated with the Ordovician–Carboniferous (450–300 Ma) Alice Springs Orogeny. A euhedral garnet porphyroblast displays bell‐shaped major element profiles diagnostic of prograde growth zoning during shear zone burial. Coexisting granulitic garnet porphyroclasts inherited from precursor wall rocks show extensive cation re‐equilibration assisted by fracturing and fragmentation. Oxygen isotope variations in the former are inversely correlated with the molar proportion of grossular, suggesting that isotopic fractionation is linked to Ca substitution. The latter generally show close correspondence to the isotopic composition of their precursor, indicating slow intergranular diffusion of O relative to Fe2+, Mg and Mn. Peak metamorphism associated with shearing (~550 °C; 5.0–6.5 kbar) occurred at c. 360 Ma, followed by rapid exhumation and cooling. Progressive Mn enrichment in rim domains indicates that the retrograde evolution caused partial garnet dissolution. Accompanying intra‐mineral porosity production then stimulated limited oxygen isotope exchange between relict granulitic garnet grains and adjacent metasomatic biotite, resulting in increased garnet δ18O values over length scales <200 μm. Spatially restricted oxygen interdiffusion was thus facilitated by increased fluid access to reaction interfaces. The concentration of Ca in channelled fracture networks suggests that its mobility was enhanced by a similar mechanism. In contrast, the intergranular diffusion of Fe2+, Mg and Mn was rock‐wide under the same P–T regime, as demonstrated by a lack of local spatial variations in the re‐equilibration of these components. The extraction of detailed reaction histories from garnet must therefore take into account the variable length‐ and time‐scales of elemental and isotopic exchange, particularly where the involvement of a fluid phase enhances the possibility of measureable resetting profiles being generated for slowly diffusing components such as Ca and O, even at low ambient temperatures and relatively fast cooling rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号