首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地质学   2篇
天文学   1篇
自然地理   2篇
  2015年   1篇
  2013年   1篇
  2001年   1篇
  1994年   1篇
  1978年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
The Lower Zone of the Eastern Bushveld Complex in the Olifants River Trough   总被引:4,自引:4,他引:4  
The Lower Zone of the Eastern Bushveld Complex in the OlifantsRiver Trough reaches 1584 m in thickness and is divisible intoBasal subzone, Lower Bronzitite, Harzburgite subzone, and UpperBronzitite. The Lower Zone is directly and conformably overlainby the Critical Zone; there is no break between the two. The principal cumulus minerals in the Lower Zone are bronziteand olivine. Chromite is an accessory cumulus mineral in peridotites,especially in the Harzburgite subzone, and cumulus plagioclaseoccurs in two thin units in the Basal subzone. Elsewhere plagioclase,with or without chromian augite, is postcumulus in origin. Electron microprobe analyses show that the range in En and Focontents of bronzite and olivine, respectively, is only a fewper cent over the entire rock sequence. Highest values of bothare found in the Harzburgite subzone. From modal and mineralanalyses the bulk composition of the Lower Zone (wt. per cent)is calculated as SiO2—53.94, TiO2—0.08, Cr2O3—0.55,V2O3—0.01, Al2O3—2.64, NiO—0.09, FeO (totalFe as FeO)—9.62, MnO—0.20, MgO—31.72, CaO—1.48,K2O—0.1, Na2O—0.13. This composition is unlike thatof any magma type, indicating that the Lower Zone is indeeda pile of crystal cumulates. From the data for the Lower Zone, together with available datafor the Critical, Main, and Upper Zones, the average MgO contentof the Eastern Bushveld Complex is calculated as about 13 percent, the Cr content as in excess of 1000 ppm. Even if the Complexformed from a single body of magma, the magma cannot have beentholeiitic, but rather olivine tholeiitic or picritic. An hypothesis of evolution of the Lower Zone is presented. Shiftsin total pressure are inferred to have been a major factor inproducing the succession of rock types and in producing theextraordinarily persistent chromitites of the overlying CriticalZone. It is suggested that the extraordinary richness in chromiteof the Bushveld is related to its formation not from tholeiiticmagma, but from more Mg-rich, chromium-rich magma drawn froma deeper level of the mantle than that which has yielded thetholeiitic basalts.  相似文献   
2.
Abstract

Recent changes in information technology offer the opportunity to explore alternative architectures for geographical information systems (GIS) which might better support advanced applications. This paper describes the architecture and implementation of the environmental decision support system (EDSS), a prototype GIS tool kit. The architecture is based on a simple yet powerful systems model using only data collections, views and operations as the basic entity types. The design of the user interface, data management and data analysis within the model are outlined, with particular emphasis on the advanced facilities for which implementation is simplified by the architecture. A prototype applications system, BANKSIA, is also described.  相似文献   
3.
陶瓷杯与蒸渗仪测定硝态氮和氨态氮淋溶的比较   总被引:1,自引:0,他引:1  
土壤硝态氮(NO3--N)和氨态氮(NH4+-N)淋溶量测定方法因草本植物和土壤类型不同而异。试验采用陶瓷杯(ceramic suction cups)和蒸渗仪(lysimeters)分别测定草地土壤NO3--N和NH4+-N淋溶量。蒸渗仪直径为50 cm和深度为70 cm,土壤类型分别为新西兰Gorge silt loam、Mataura sandy loam和Lismore stony silt loam,重复4次。陶瓷杯水平插入蒸渗仪不锈钢筒,陶瓷杯插孔中心离不锈钢筒底部距离分别为35 cm(上陶瓷杯)和60 cm(下陶瓷杯)。在试验前,喷灌72 h冲洗蒸渗仪土壤溶液,使淋溶液NO3--N浓度接近0 mg·L-1,然后1次性施加250 kg N·hm-2尿素溶解液,用喷灌系统喷灌蒸渗仪,每周喷灌1次,喷灌系统误差使Gorge、Mataura和Lismore土壤喷灌强度分别为15.0、19.0和18.7 mm·h-1,1次喷灌持续时间为3 h。在Gorge和Lismore土壤,陶瓷杯和蒸渗仪测定NO3--N淋溶量差异显著。在Gorge土壤,上陶瓷杯、下陶瓷杯和蒸渗仪测定NO3--N淋溶累计量分别为64、68和54 kg N·hm-2,测定NH4+-N淋溶累计量分别为0.43、0.49和0.43 kg N·hm-2;在Mataura土壤,上陶瓷杯、下陶瓷杯和蒸渗仪测定NO3--N淋溶累计量分别为57、68和62 kg N·hm-2,测定NH4+-N淋溶累计量分别为0.51、0.37和0.23 kg N·hm-2;在Lismore土壤,上陶瓷杯、下陶瓷杯和蒸渗仪测定NO3--N淋溶累计量分别为61、103和99 kg N·hm-2,测定NH4+-N淋溶累计量分别为1.70、2.24和2.04 kg N·hm-2。在结构发育良好的Gorge和Lismore土壤,陶瓷杯不适合测定NO3--N淋溶量,但适合应用于砂土质地和发育不完善Mataura土壤。NH4+-N淋溶累计量占NO3--N淋溶累计量的0.37%~2.93%,在测定和计算氮淋溶时,NH4+-N淋溶可以忽略不计。  相似文献   
4.
The 2.7-Ga Reliance Formation of the Ngezi Group, Belingwe GreenstoneBelt, Zimbabwe, contains extremely fresh komatiite lavas. Detailedfield mapping and a 200-m deep drill-hole, with excellent corerecovery, demonstrated the existence of a suite of lava flows.Each major flow is 10 m thick and characteristically exhibitschilled top and bottom margins, a spinifex zone dominated byrandom spinifex, a B1 zone, and a thick cumulate zone that typicallycomposes two-thirds of the flow thickness. Preservation of olivineand pyroxene mineralogy is superb by Archaean standards, tothe extent that even the tips of skeletal crystals survive.The matrix, although devitrified, is well preserved. Detailedstudy of two flows shows that skeletal grains from the spinifexzone have maximum Fo contents of 91.4. The Fo contents of microphenocrystsfrom the cumulate zone range from Fo91.2 to Fo91.6, but rarelarge phenocrysts ( 5 vol.%) have maximum Fo contents of 93.6.The Fo contents of the cumulate olivines do not vary with stratigraphicheight, implying that the cumulate zone formed rapidly, by accumulationof transported crystals. The cumulate zones contain 42–57%modal olivine and display reverse size grading of the olivinemicrophenocrysts. This grain-size variation is believed to resultfrom adcumulus growth within a cumulate pile formed by the formedby the gravitational settling of clusters of olivine crystals.Textural relationships indicate that the final part of the flowto start to crystallize was the lowermost part of the spinifexzone. Reprint requests.  相似文献   
5.
Abstract— This paper reports the current status of my smoothed particle hydrodynamic (SPH) simulations of the formation of the Moon. Since the Moon has recently been found to have been formed approximately 50 Ma after the solar nebula itself was formed, I have placed the lunar formation problem in the entire context of the formation and early evolution of the solar nebula. This set of processes remains controversial, and I have outlined what I believe to be the essential physical processes involved. These start with the formation of short‐lived (now extinct) radioactive nuclides in a massive supernova. Then follows the probable role of the supernova ejecta in triggering the collapse of a core in a molecular cloud to form the solar nebula, and the injection of the radioactivities into the collapsing cloud core. Most of the solar nebula dissipates to form the Sun, and what remains becomes relatively quiescent. Gas drag acting on interstellar grains and the dustballs formed from them, due both to vertical descent to midplane and inward spiralling in midplane, quickly causes growth of the solid materials to form planetesimals. When these bodies reach the kilometer size range and beyond, gravitational forces dominate the accumulation process. The accumulation of the Earth requires of the order of 108 years. About half‐way through that process the giant impact occurs with the next largest accumulating body near the protoearth. I have been simulating the giant impact using SPH with 100 000 particles. The simulations of three of these runs are depicted in detail with a series of color images. It is shown that conventional accumulation simulations that assume Keplerian orbits and that merge bodies upon collision are misleading because they cannot take account of tidal stripping nor of loss and gain of particles during the accumulation. In addition, the large rotational flattening of the protoearth renders the orbital motions nonkeplerian. The simulations that are shown in detail have been followed for just over a week of real time, and in that time the largest accumulating clump has reached about half or more of the mass of the Moon and additional clumps have accumulated into bodies in the range of 1 to 20% of a lunar mass. It is important to note that although these runs have given very promising results, the parameter space that could plausibly be associated with the giant impact is not yet adequately explored.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号