首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2013年   1篇
  2012年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Numerous Cu deposits of the Udokan-Chineysky ore district (Udokan deposit of cupriferous sandstones, deposits of the Chineysky pluton, etc.), which occur in sedimentary and igneous rocks, are similar in many genetic features. One of these features is the similar parameters of fluid inclusions (hydrothermal fluids) in quartz of the Udokan deposit, rich chalcopyrite ores from the Rudnyi (Rudnyie deposit, and veins of the Pravoingamakitsky deposit studied previously. Fluid inclusions have the same range of high salinity and homogenization temperatures. These studies combined with geological data allow us to consider the formation of contact sulfide ores from the Chineisky pluton and Pravoingamakitsky and Udokan deposits as a common compound fluid-magmatic ore-generating system. The sedimentary rocks primarily enriched in chalcopyrite, pyrite, and pyrrhotite of the entire section of the Udokan complex served as the host media for the hydrothermal fluids and deposits of various scales.  相似文献   
2.
We report new data on the stratigraphy, mineralogy and geochemistry of the rocks and ores of the Maslovsky Pt–Cu–Ni sulfide deposit which is thought to be the southwestern extension of the Noril’sk 1 intrusion. Variations in the Ta/Nb ratio of the gabbro-dolerites hosting the sulfide mineralization and the compositions of their pyroxene and olivine indicate that these rocks were produced by two discrete magmatic pulses, which gave rise to the Northern and Southern Maslovsky intrusions that together host the Maslovsky deposit. The Northern intrusion is located inside the Tungusska sandstones and basalt of the Ivakinsky Formation. The Southern intrusion cuts through all of the lower units of the Siberian Trap tuff-lavas, including the Lower Nadezhdinsky Formation; demonstrating that the ore-bearing intrusions of the Noril’sk Complex post-date that unit. Rocks in both intrusions have low TiO2 and elevated MgO contents (average mean TiO2 <1 and MgO?=?12?wt.%) that are more primitive than the lavas of the Upper Formations of the Siberian Traps which suggests that the ore-bearing intrusions result from a separate magmatic event. Unusually high concentrations of both HREE (Dy+Yb+Er+Lu) and Y (up to 1.2 and 2.1?ppm, respectively) occur in olivines (Fo79.5 and 0.25% NiO) from picritic and taxitic gabbro-dolerites with disseminated sulfide mineralization. Thus accumulation of HREE, Y and Ni in the melts is correlated with the mineral potential of the intrusions. The TiO2 concentration in pyroxene has a strong negative correlation with the Mg# of both host mineral and Mg# of host rock. Sulfides from the Northern Maslovsky intrusion are predominantly chalcopyrite–pyrrhotite–pentlandite with subordinate and minor amounts of cubanite, bornite and millerite and a diverse assemblage of rare precious metal minerals including native metals (Au, Ag and Pd), Sn–Pd–Pt–Bi–Pb compounds and Fe–Pt alloys. Sulfides from the Southern Maslovsky intrusion have δ 34S?=?5–6‰ up to 10.8‰ in two samples whereas the country rock basalt have δ 34S?=?3–4‰, implying there was no in situ assimilation of surrounding rocks by magmas.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号