首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
地质学   14篇
  2019年   3篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2011年   1篇
  2009年   2篇
  2007年   1篇
  2004年   1篇
  1998年   1篇
  1996年   1篇
  1991年   1篇
排序方式: 共有14条查询结果,搜索用时 93 毫秒
1.
Liner design for waste disposal sites   总被引:5,自引:0,他引:5  
 Since the beginning of the 1980s waste disposal has become a particularly sensitive issue. This has led to the development of new legislations in the European Community and internationally which resulted in an array of regulations concerning landfill liner design. This paper comments on different "engineered" containment methods with particular reference to landfill liner design. Suggestions based on the review of the different methodologies are given and a case study is presented. Received: 25 February 1997 · Accepted: 16 December 1997  相似文献   
2.
Acta Geotechnica - The influence of thermal loads on the ultimate bearing capacity of energy piles is examined. Five laboratory model tests were carried out to investigate piles equipped with...  相似文献   
3.
This paper presents reviews of studies on properties of coal pertinent to carbon dioxide (CO2) sequestration in coal with specific reference to Victorian brown coals. The coal basins in Victoria, Australia have been identified as one of the largest brown coal resources in the world and so far few studies have been conducted on CO2 sequestration in this particular type of coals. The feasibility of CO2 sequestration depends on three main factors: (1) coal mass properties (chemical, physical and microscopic properties), (2) seam permeability, and (3) gas sorption properties of the coal. Firstly, the coal mass properties of Victorian brown coal are presented, and then the general variations of the coal mass properties with rank, for all types of coal, are discussed. Subsequently, coal gas permeability and gas sorption are considered, and the physical factors which affect them are examined. In addition, existing models for coal gas permeability and gas sorption in coal are reviewed and the possibilities of further development of these models are discussed. According to the previous studies, coal mass properties and permeability and gas sorption characteristics of coals are different for different ranks: lignite to medium volatile bituminous coals and medium volatile bituminous to anthracite coals. This is important for the development of mathematical models for gas permeability and sorption behavior. Furthermore, the models have to take into account volume effect which can be significant under high pressure and temperature conditions. Also, the viscosity and density of supercritical CO2 close to the critical point can undergo large and rapid changes. To date, few studies have been conducted on CO2 sequestration in Victorian brown coal, and for all types of coal, very few studies have been conducted on CO2 sequestration under high pressure and temperature conditions.  相似文献   
4.
Segmental retaining wall (SRW) systems are commonly used in geotechnical practice to stabilize cut and fill slopes. Because of their flexibility, these systems can tolerate minor movements and settlements without incurring damage or crack. Despite these advantages, very few numerical studies of large deformations and post‐failure behavior of SRW systems are found in the current literature. Traditional numerical methods, such as the finite element method, suffer from mesh entanglement, thus are unable to simulate large deformations and flexible behavior of retaining wall blocks in SRW systems. To overcome the above limitations, a novel computational framework based on the smoothed particle hydrodynamics (SPH) method was developed to simulate large deformations and post‐failure behavior of soils and retaining wall blocks in SRW systems. The proposed numerical framework is a hybrid continuum/discontinuum approach that can model soil as an elasto‐plastic material and retaining wall blocks as independent rigid bodies associated with both translational and rotational degrees of freedom. A new contact model is proposed within the SPH framework to simulate the interaction between the soil and the blocks and between the blocks. As an application of the proposed numerical method, a two‐dimensional simulation of an SRW collapse was simulated and compared to experimental results conducted under the same conditions. The results showed that the proposed computational approach provided satisfactory agreement with the experiment. This suggests that the new framework is a promising numerical approach to model SRW systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
5.
Semi-continuous (1/30 min) records of physicochemical parameters (T,S, DO and pH) have been measured at 1.50 m in Mediterranean coastal waters (Marseilles) from 1998 to 2000, together with meteorological parameters. Physicochemical data were studied in order to synthesise the information at different time scales (inter-annual, season, day, hour), particularly the semi-conservative DO and pH response to hydroclimatic variables. At a daily time scale, important circadian dynamic has been measured under all circumstances with a strong reactivity to irradiance change under the influence of biological activity. This work may contribute to the definition of new tools for coastal waters observation. To cite this article: N. Bensoussan et al., C. R. Geoscience 336 (2004).  相似文献   
6.

This paper introduces a simplified method to investigate the influence of thermal loads on the shaft friction and tip resistance of energy piles. The method is based on the influence factors (λ and η) which are back-calculated drawing on a large number of field and model tests. Values for λ and η during heating and cooling are suggested. Moreover, a new equation is proposed to calculate total shaft friction. The equations concerning the relationship between η and temperature difference are recommended to investigate the impacts of the thermal load on the pile tip resistance. The slope of the linear equation of an end-bearing pile is 2.14 times that of a floating pile indicating that the pile tip resistance of an end-bearing pile is much more affected by the same thermal load.

  相似文献   
7.
8.
This paper presents the results of a study on the thermal conductivity of a soft saturated clay (Bangkok clay) carried out in relation to an investigation into using thermal treatment to enhance the consolidation process of soft soils. The thermal conductivity of clay specimens was measured in the laboratory using a steady state method (divided bar test) and a transient state method (needle probe test). In general, the laboratory test results show that the thermal conductivity increased with the increase in soil density. However, the needle probe test was found to yield greater thermal conductivities than those derived from the divided bar test. Furthermore, to assess the validity of the laboratory test results, the heat transfer results obtained from a full-scale embankment test that employed prefabricated vertical thermo-drains (PVTD) were simulated numerically using the laboratory determined thermal conductivity values. The numerical analysis indicates that the field thermal conductivity was close to the value obtained from the needle probe test. However, it was also found that the changes in thermal conductivity values obtained from the two laboratory methods did not impact significantly on heat flow behaviour, suggesting that the two methods are acceptable for characterizing the thermal conductivity of soils.  相似文献   
9.
Summary The mechanical behaviour of reconstituted normally consolidated Boom clay was examined in a series of laboratory triaxial stress path tests. The aim was to establish some basic characteristics of this soil. The compressibility of the reconstituted Boom clay was found to be moderate, corresponding to the soils of the same plasticity. The results indicated also that the destructured Boom clay exhibited a brittle behaviour. The undrained secant stiffness was found to vary with strain level and also to be dependent on the consolidation pressure.  相似文献   
10.
This paper focuses on using urea hydrolysis as a bio-grouting process to increase the strength of crushed aggregates commonly used in stone columns. Various reagent phases (2, 4, 6 and 12 phases) consisted of alternately percolating solutions containing bacterial suspension and cementation solution through the soil column. In addition, a multi-soil lift strategy with options of up to four soil lifts was undertaken to test the applicability of bio-grout to cement crushed aggregate columns. While the average amount of calcium carbonate precipitation was roughly unchanged in both techniques, the distribution within the crushed aggregate columns was heterogeneous. However, the distribution of the precipitated calcium carbonate is almost uniform in crushed aggregates treated by a two-soil lift strategy and a four-phase treatment strategy. It is also deducted that both techniques can be combined to gain a uniform calcium carbonate and strength along a long sand/stone column. Furthermore, a one-soil lift resulted in higher strength than using multi-soil lifts, and a maximum strength of approximately 2.3 MPa was achieved using 4-reagent phase treatment strategy. Scanning electron microscopy and electron dispersive spectroscopy analysis validate that calcium carbonate was deposited as white crystals on the surface of the crushed aggregate particles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号