首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
测绘学   3篇
地球物理   3篇
地质学   5篇
  2021年   1篇
  2019年   1篇
  2016年   1篇
  2014年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  1982年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
Destructive volcaniclastic flows are among the most recurrent and dangerous natural phenomena in volcanic areas. They can originate not only during or shortly after an eruption (syn-eruptive) but also during a period of volcanic quiescence (inter-eruptive), when heavy and/or persistent rains remobilize loose pyroclastic deposits. The area in Italy most prone to such flows is that of the Apennine Mountains bordering the southern Campania Plain. These steep slopes are covered by pyroclastic material of variable thickness (a few cm to several m) derived from the explosive activity of the Somma-Vesuvius and Campi Flegrei volcanoes a few tens of kilometers to the west. The largest and most recent devastating event occurred on May 5, 1998, causing the death of more than 150 people and considerable damage to villages at the foot of the Apennine Mountains. This tragic event was only the most recent of a number of volcaniclastic flows affecting the area in both historical and prehistoric times. Historical accounts report that more than 500 events have occurred in the last five centuries and that more than half of these occurred in the last 100 years, causing hundreds of deaths. In order to improve volcaniclastic flow hazard zonation and risk mitigation in the study area, we produced a zonation map that identifies the drainage basins potentially prone to disruption. This map was obtained by combining morphological characteristics (concavity and basin shape factor) and the mean slope distribution of drainage basins derived from a digital elevation model with a 10-m resolution. These parameters allowed for the classification of 1,069 drainage basins, which have been grouped into four different classes of proneness to disruption: low, moderate, high and very high. The map compiled in a GIS environment, as well as the linked database, can be rapidly queried.  相似文献   
2.
Pyroclastic density currents (PDC) related to paroxysmal eruptions have caused a large number of casualties in the recent history of Stromboli. We combine here a critical review of historical chronicles with detailed stratigraphic, textural, and petrographic analyses of PDC deposits emplaced at Stromboli over the last century to unravel the origin of currents, their flow mechanism and the depositional dynamics. We focus on the 1930 PDC as they are well described in historical accounts and because the 1930 eruption stands as the most voluminous and destructive paroxysm of the last 13 centuries. Stromboli PDC deposits are recognizable from their architecture and the great abundance of fresh, well-preserved juvenile material. General deposit features indicate that Stromboli PDC formed due to the syn-eruptive gravitational collapse of hot pyroclasts rapidly accumulated over steep slopes. Flow channelization within the several small valleys cut on the flanks of the volcano can enhance the mobility of PDC, as well as the production of fine particles by abrasion and comminution of hot juvenile fragments, thereby increasing the degree of fluidization. Textural analyses and historical accounts also indicate that PDC can be fast (15–20 m/s) and relatively hot (360–700 °C). PDC can thus flow right down the slopes of the volcano, representing a major hazard. For this reason, they must be adequately taken into account when compiling risk maps and evaluating volcanic hazard on the Island of Stromboli.  相似文献   
3.
The town of Zafferana Etnea, located on the southeastern slope of Mt. Etna volcano (Italy), has been repeatedly threatened by lava flows in recent centuries. The last serious threat occurred during the 1991–1993 eruption, when the lava front came to a halt only 1.7 km from the centre of town. Morphostructural data derived from light detection and ranging (LiDAR) surveys carried out on Etna in 2005 have enabled us to evaluate the risk of lava invasion in a section (16 km2) of the Zafferana Etnea territory. Qualitative and quantitative results are obtained combining the information derived from LiDAR analysis with geological, morphological and structural data using geographic information systems technology (GIS). The study quantifies in unprecedented detail the areal extent and volume of forested and urban areas and its degree of exposure to different levels of hazard from future lava invasion. Nearly 52% of the urban texture fall into areas of moderate to high risk from lava invasion. Future land use planning should take these findings into account and promote new development preferentially in areas of lower risk.  相似文献   
4.
High-resolution digital topography is essential for land management and planning in any type of territory as well as the reproduction of the Earth surface in a geocoded digital format that allows several Digital Earth applications. In a volcanic environment, Digital Elevation Models are a valid reference for multi-temporal analyses aimed to observe frequent changes of a volcano edifice and for the relative detailed morphological and structural analyses. For the first time, a DTM (Digital Terrain Model) and a DSM (Digital Surface Model) covering the entire Mt. Etna volcano (Italy) derived from the same airborne Light Detection and Ranging (LiDAR) are here presented. More than 250 million 3D LiDAR points have been processed to distinguish ground elements from natural and anthropic features. The end product is the highly accurate representation of Mt. Etna landscape (DSM) and ground topography (DTM) dated 2005. Both models have a high spatial resolution of 2?m and cover an area of 620?km2. The DTM has been validated by GPS ground control points. The vertical accuracy has been evaluated, resulting in a root-mean-square-error of ±?0.24?m. The DTM is available as electronic supplement and represents a valid support for various scientific studies.  相似文献   
5.
Over the last 42 ka, volcanic activity at Lipari Island (Aeolian Arc, Italy) produced lava domes, flows and pyroclastic deposits with rhyolitic composition, showing in many cases evidence of magma mixing such as latitic enclaves and banding. In this same period, on nearby Vulcano Island, similar rhyolitic lava domes, pyroclastic products and lava flows, ranging in composition from shoshonite to rhyolite, were erupted. As a whole, the post-42 ka products of Lipari and Vulcano show geochemical variations with time, which are well correlated between the two islands and may correspond to a modification of the primary magmas. The rhyolitic products are similar to each other in their major elements composition, but differ in their trace element abundances (e.g. La ranging from 40 to 78 ppm for SiO2 close to 75 wt%). Their isotopic composition is variable, too. The 87Sr/86Sr (0.704723–0.705992) and 143Nd/144Nd (0.512575–0.512526) ranges partially overlap those of the more mafic products (latites), having 87Sr/86Sr from 0.7044 to 0.7047 and 143Nd/144Nd from 0.512672 to 0.512615. 206Pb/204Pb is 19.390–19.450 in latites and 19.350–19.380 in rhyolites. Crystal fractionation and crustal assimilation processes of andesitic to latitic melts, showing an increasing content in incompatible elements in time, may explain the genesis of the different rhyolitic magmas. The rocks of the local crustal basement assimilated may correspond to lithotypes present in the Calabrian Arc. Mixing and mingling processes between latitic and rhyolitic magmas that are not genetically related occur during most of the eruptions. The alignment of vents related to the volcanic activity of the last 40 ka corresponds to the NNW–SSE Tindari–Letojanni strike-slip fault and to the correlated N–S extensional fault system. The mafic magmas erupted along these different directions display evidence of an evolution at different PH2O conditions. This suggests that the Tindari–Letojanni fault played a relevant role in the ascent, storage and diversification of magmas during the recent volcanic activity.  相似文献   
6.
The Campania Region (southern Italy) is characterized by the frequent occurrence of volcaniclastic debris flows that damage property and loss of life (more than 170 deaths between 1996 and 1999). Historical investigation allowed the identification of more than 500 events during the last four centuries; in particular, more than half of these occurred in the last 100 years, causing hundreds of deaths. The aim of this paper is to quantify debris-flow hazard potential in the Campania Region. To this end, we compared several elements such as the thickness distribution of pyroclastic fall deposits from the last 18 ka of the Vesuvius and Phlegrean Fields volcanoes, the slopes of relieves, and the historical record of volcaniclastic debris flows from A.D. 1500 to the present. Results show that flow occurrence is not only a function of the cumulative thickness of past pyroclastic fall deposits but also depends on the age of emplacement. Deposits younger than 10 ka (Holocene eruptions) apparently increase the risk of debris flows, while those older than 10 ka (Late Pleistocene eruptions) seem to play a less prominent role, which is probably due to different climatic conditions, and therefore different rates of erosion of pyroclastic falls between the Holocene and the Late Pleistocene. Based on the above considerations, we compiled a large-scale debris-flow hazard map of the study area in which five main hazard zones are identified: very low, low, moderate, high, and very high.  相似文献   
7.
This paper examines recurrent spatial patterns of prehistoric sites in relation to landforms, alluvial fills, and soil development in the uplands and valleys of the Madaba and Dhiban Plateaus of Jordan. Mousterian lithics (Middle Paleolithic) are largely found on high strath terraces plateaus, where they are associated with red Mediterranean soils. In valleys, Upper Paleolithic sites are often associated with reworked loess deposits of the Dalala allostratigraphic unit. Epipaleolithic occupations are found stratified in deposits of the Thamad Terrace, and Pre‐Pottery Neolithic and Pottery Neolithic occupations are associated with colluvium mantling the Thamad Terrace. The Tur al‐Abyad Terrace and the Iskanderite alluvial inset are the remnants of middle Holocene floodplains, which were attractive areas for Chalcolithic and Early Bronze Age settlements. Sometime around 4000 B.C., stream incision and further lateral erosion destroyed these floodplains. These historic terraces are underlain by alluvial deposits ranging in age from Roman to Early Islamic periods. The sequence of allostratigraphic units, paleosols, and terraces are the basis for reconstructing phases of fluvial aggradation and stream incision during the past 20,000 years. © 2005 Wiley Periodicals, Inc.  相似文献   
8.
The Sorrentina Peninsula is a densely populated area with high touristic impact. It is located in a morphologically complex zone of Southern Italy frequently affected by dangerous and calamitous landslides. This work contributes to the prevention of such natural disasters by applying a GIS-based interdisciplinary approach aimed to map the areas more potentially prone to trigger slope instability phenomena. We have developed the Landslide Susceptibility Index (LSI) combining five weighted and ranked susceptibility parameters on a GIS platform. These parameters are recognized in the literature as the main predisposing factors for triggering landslides. This work combines analyses conducted on Remote Sensing, Geo-Lithology and Morphometry data and it is organized in the following logical steps: i) Multi-temporal InSAR technique was applied to Envisat-ASAR (2003–2010) and COSMO-SkyMed (2013–2015) datasets to obtain the ground displacement time series and the relative mean ground velocity maps. InSAR allowed the detection of the areas that are subjected to ground deformation and the main affected municipalities; ii) Such deformation areas were investigated through airborne photo interpretation to identify the presence of geomorphological peculiarities connected to potential slope instability. Subsequently, some of these peculiarities were checked on the field; iii) In these deformation areas the susceptibility parameters were mapped in the entire territory of Amalfi and Conca dei Marini and then investigated with a multivariate analysis to derive the classes and the respective weights used in the LSI calculation. The resulting LSI map classifies the two municipalities with high spatial resolution (2m) according to five classes of instability. The map highlights that the high/very high susceptibility zones cover 6% of the investigated territory and correspond to potential landslide source areas characterized by 25°-70° slope angles. A spatial analysis between the map of the historical landslides and the areas classified according to susceptibility allowed testing of the reliability of the LSI Index, resulting in 85% prediction accuracy.  相似文献   
9.
A suitable index is proposed to evaluate the natural short–medium-term recovery capability of vegetation in burnt areas. The study area covers 2450 km2 in western Tuscany (Province of Pisa, Italy). This region is characterized by a typical Mediterranean climate and is subject to fire damage during the dry summer season. Damage is mitigated where a natural rapid regrowth of vegetation prevents soil erosion, supporting the return to a natural pre-fire state.  相似文献   
10.
Brezzi  Lorenzo  Bisson  Alberto  Pasa  Davide  Cola  Simonetta 《Landslides》2021,18(6):2143-2158

A large number of landslides occur in North-Eastern Italy during every rainy period due to the particular hydrogeological conditions of this area. Even if there are no casualties, the economic losses are often significant, and municipalities frequently do not have sufficient financial resources to repair the damage and stabilize all the unstable slopes. In this regard, the research for more economically sustainable solutions is a crucial challenge. Floating composite anchors are an innovative and low-cost technique set up for slope stabilization: it consists in the use of passive sub-horizontal reinforcements, obtained by coupling a traditional self-drilling bar with some tendons cemented inside it. This work concerns the application of this technique according to the observational method described within the Italian and European technical codes and mainly recommended for the design of geotechnical works, especially when performed in highly uncertain site conditions. The observational method prescribes designing an intervention and, at the same time, using a monitoring system in order to correct and adapt the project during realization of the works on the basis of new data acquired while on site. The case study is the landslide of Cischele, a medium landslide which occurred in 2010 after an exceptional heavy rainy period. In 2015, some floating composite anchors were installed to slow down the movement, even if, due to a limited budget, they were not enough to ensure the complete stabilization of the slope. Thanks to a monitoring system installed in the meantime, it is now possible to have a comparison between the site conditions before and after the intervention. This allows the evaluation of benefits achieved with the reinforcements and, at the same time, the assessment of additional improvements. Two stabilization scenarios are studied through an FE model: the first includes the stabilization system built in 2015, while the second evaluates a new solution proposed to further increase the slope stability.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号