首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1093篇
  免费   48篇
  国内免费   14篇
测绘学   50篇
大气科学   144篇
地球物理   241篇
地质学   401篇
海洋学   90篇
天文学   123篇
综合类   1篇
自然地理   105篇
  2023年   3篇
  2022年   5篇
  2021年   27篇
  2020年   41篇
  2019年   26篇
  2018年   30篇
  2017年   37篇
  2016年   48篇
  2015年   41篇
  2014年   48篇
  2013年   61篇
  2012年   49篇
  2011年   81篇
  2010年   58篇
  2009年   77篇
  2008年   76篇
  2007年   44篇
  2006年   39篇
  2005年   37篇
  2004年   25篇
  2003年   40篇
  2002年   20篇
  2001年   19篇
  2000年   21篇
  1999年   15篇
  1998年   11篇
  1997年   11篇
  1996年   11篇
  1995年   13篇
  1994年   5篇
  1993年   10篇
  1992年   10篇
  1991年   7篇
  1990年   4篇
  1989年   6篇
  1988年   5篇
  1986年   6篇
  1985年   5篇
  1984年   11篇
  1983年   3篇
  1982年   10篇
  1980年   7篇
  1978年   7篇
  1977年   4篇
  1976年   6篇
  1973年   5篇
  1972年   6篇
  1970年   3篇
  1967年   2篇
  1938年   2篇
排序方式: 共有1155条查询结果,搜索用时 31 毫秒
1.
The elm decline of 5000 14C yr ago has been the most widely discussed phenomenon in post‐glacial vegetation history. This pan‐European reduction of elm populations, echoed in the decimation of elmwoods in Europe during the twentieth century, has attracted a series of interrelated hypotheses involving climate change, human activity, disease and soil deterioration. The elm bark beetle (Scolytus scolytus L.) is an essential component of disease explanations. We present evidence for the presence of the beetle over a prolonged period (ca. 7950–4910 yr BP [8800–5660 cal. yr BP]) from a lowland raised mire deposit in northeast Scotland, with its final appearance at this site, and the first and only appearance in another mire of a single scolytid find, around the time of the elm decline. The subfossil S. scolytus finds are not only the first from Scotland, but they also represent the most comprehensive sequence of finds anywhere. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
2.
3.
High-resolution paleoenvironmental data from a peat profile with a small pollen source area are used to reconstruct the impacts of landnám on vegetation and soils at a Norse farm complex (∅2 at Tasiusaq) comprising two farms in the Eastern Settlement of Greenland. Analyses include the AMS 14C dating of plant macrofossil samples and the use of Bayesian radiocarbon calibration to construct improved age-depth models for Norse cultural horizons. The onset of a regional landnám may be indicated by the clearance of Betula pubescens woodland immediately prior to local settlement. The latter is dated to AD 950-1020 (2σ) and is characterised by possible burning of Betula glandulosa scrub to provide grassland pasture for domestic stock. Clearance and grazing resulted in accelerated levels of soil erosion at a westerly farm. This was followed by an easterly migration of settlement and agriculture. Site constraints prevent an assessment of the demise of the easterly farm, but pressures of overgrazing and land degradation may have been the major factors responsible for the abandonment of the earlier farm.  相似文献   
4.
Seventy-seven gem opals from ten countries were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) through a dilution process, in order to establish the nature of the impurities. The results are correlated to the mode of formation and physical properties and are instrumental in establishing the geographical origin of a gem opal. The geochemistry of an opal is shown to be dependant mostly on the host rock, at least for examples from Mexico and Brazil, even if modified by weathering processes. In order of decreasing concentration, the main impurities present are Al, Ca, Fe, K, Na, and Mg (more than 500 ppm). Other noticeable elements in lesser amounts are Ba, followed by Zr, Sr, Rb, U, and Pb. For the first time, geochemistry helps to discriminate some varieties of opals. The Ba content, as well as the chondrite-normalized REE pattern, are the keys to separating sedimentary opals (Ba > 110 ppm, Eu and Ce anomalies) from volcanic opals (Ba < 110 ppm, no Eu or Ce anomaly). The Ca content, and to a lesser extent that of Mg, Al, K and Nb, helps to distinguish gem opals from different volcanic environments. The limited range of concentrations for all elements in precious (play-of-color) compared to common opals, indicates that this variety must have very specific, or more restricted, conditions of formation. We tentatively interpreted the presence of impurities in terms of crystallochemistry, even if opal is a poorly crystallized or amorphous material. The main replacement is the substitution of Si4+ by Al3+ and Fe3+. The induced charge imbalance is compensated chiefly by Ca2+, Mg2+, Mn2+, Ba2+, K+, and Na+. In terms of origin of color, greater concentrations of iron induce darker colors (from yellow to “chocolate brown”). This element inhibits luminescence for concentrations above 1000 ppm, whereas already a low content in U (≤ 1 ppm) induces a green luminescence.  相似文献   
5.
Highly insoluble Ce-bearing phosphate minerals form by weathering of apatite [Ca5(PO4)3.(OH,F,Cl)], and are important phosphorous repositories in soils. Although these phases can be dissolved via biologically-mediated pathways, the dissolution mechanisms are poorly understood. In this paper we report spectroscopic evidence to support coupling of redox transformations of organic carbon and cerium during the reaction of rhabdophane (CePO4·H2O) and catechol, a ubiquitous biogenic compound, at pH 5. Results show that the oxic–anoxic conditions influence the mineral dissolution behavior. Under anoxic conditions, the release of P and Ce occurs stoichiometrically. In contrast, under oxic conditions, the mineral dissolution behavior is incongruent, with dissolving Ce3+ ions oxidizing to CeO2. Reaction product analysis shows the formation of CO2, polymeric C, and oxalate and malate. The presence of more complex forms of organic carbon was also confirmed. Near edge X-ray absorption fine structure spectroscopy measurements at Ce-M4,5 and C-K absorption edges on reacted CePO4·H2O samples in the absence or presence of catechol and dissolved oxygen confirm that (1) the mineral surface converts to the oxide during this reaction, while full oxidation is limited to the near-surface region only; (2) the Ce valence remains unchanged when the reaction between CePO4·H2O and O2 but in the absence of catechol. Carbon K-edge spectra acquired from rhabdophane reacted with catechol under oxic conditions show spectral features before and after reaction that are considerably different from catechol, indicating the formation of more complex organic molecules. Decreases in intensity of characteristic catechol peaks are accompanied by the appearance of new π* resonances due to carbon in carboxyl (ca. 288.5 eV) and carbonyl (ca. 289.3 eV) groups, and the development of broad structure in the σ* region characteristic of aliphatic carbon. Evolution of the C K-edge spectra is consistent with aromatic-ring cleavage and polymerization. These results further substantiate that the presence of catechol, O2 (aq) causes both the oxidation of structural Ce3+ and the transformation of catechol to more complex organic molecules. Scanning Transmission X-Ray Microscopy measurements at the C K and Ce M4,5 edges indicate three dominant organic species, varying in complexity and association with the inorganic phase. Untransformed catechol is loosely associated with CeO2, whereas more complex organic molecules that exhibit lower aromaticity and stronger CO π* resonances of carboxyl-C and carbonyl-C groups are only found in association with the grains. These results further serve as basis to postulate that, in the presence of O2, CeO2 can mediate the oxidative polymerization of catechol to form higher molecular weight polymers. The present work provides evidence for a pathway of biologically-induced, non-enzymatic oxidation of cerium and formation of small CeO2 particles at room temperature. These findings may have implications for carbon cycling in natural and cerium-contaminated soils and aqueous environments.  相似文献   
6.
Dissolved tetrafluoromethane (CF4) and sulfur hexafluoride (SF6) concentrations were measured in groundwater samples from the Eastern Morongo Basin (EMB) and Mojave River Basin (MRB) located in the southern Mojave Desert, California. Both CF4 and SF6 are supersaturated with respect to equilibrium with the preindustrial atmosphere at the recharge temperatures and elevations of the Mojave Desert. These observations provide the first in situ evidence for a flux of CF4 from the lithosphere. A gradual basin-wide enhancement in dissolved CF4 and SF6 concentrations with groundwater age is consistent with release of these gases during weathering of the surrounding granitic alluvium. Dissolved CF4 and SF6 concentrations in these groundwaters also contain a deeper crustal component associated with a lithospheric flux entering the EMB and MRB through the underlying basement. The crustal flux of CF4, but not of SF6, is enhanced in the vicinity of local active fault systems due to release of crustal fluids during episodic fracture events driven by local tectonic activity. When fluxes of CF4 and SF6 into Mojave Desert groundwaters are extrapolated to the global scale they are consistent, within large uncertainties, with the fluxes required to sustain the preindustrial atmospheric abundances of CF4 and SF6.  相似文献   
7.
Dissolved Fe concentrations in subterranean estuaries, like their river-seawater counterparts, are strongly controlled by non-conservative behavior during mixing of groundwater and seawater in coastal aquifers. Previous studies at a subterranean estuary of Waquoit Bay on Cape Cod, USA demonstrate extensive precipitation of groundwater-borne dissolved ferrous iron and subsequent accumulation of iron oxides onto subsurface sands. Waquoit Bay is thus an excellent natural laboratory to assess the mechanisms of Fe-isotope fractionation in redox-stratified environments and determine potential Fe-isotope signatures of groundwater sources to coastal seawater. Here, we report Fe isotope compositions of iron-coated sands and porewaters beneath the intertidal zone of Waquoit Bay. The distribution of pore water Fe shows two distinct sources of Fe: one residing in the upward rising plume of Fe-rich groundwater and the second in the salt-wedge zone of pore water. The groundwater source has high Fe(II) concentration consistent with anoxic conditions and yield δ56Fe values between 0.3 and −1.3‰. In contrast, sediment porewaters occurring in the mixing zone of the subterranean estuary have very low δ56Fe values down to −5‰. These low δ56Fe values reflect Fe-redox cycling and result from the preferential retention of heavy Fe-isotopes onto newly formed Fe-oxyhydroxides. Analysis of Fe-oxides precipitated onto subsurface sands in two cores from the subterranean estuary revealed strong δ56Fe and Fe concentration gradients over less than 2m, yielding an overall range of δ56Fe values between −2 and 1.5‰. The relationship between Fe concentration and δ56Fe of Fe-rich sands can be modeled by the progressive precipitation of Fe-oxides along fluid flow through the subterranean estuary. These results demonstrate that large-scale Fe isotope fractionation (up to 5‰) can occur in subterranean estuaries, which could lead to coastal seawater characterized by very low δ56Fe values relative to river values.  相似文献   
8.
We report a ten-year study of the abundance and activity of megabenthos on the Porcupine Abyssal Plain, northeast Atlantic, together with observations on the occurrence of phytodetritus at the deep-sea floor (4850 m). Using the Southampton Oceanography Centre time-lapse camera system, ‘Bathysnap’, we have recorded a radical change in the abundance and activity of megabenthos between the two periods of study (1991–1994 and 1997–2000). In 1991–1994, the larger megabenthos occurred at an abundance of c. 71.6/ha and were dominated by large holothurians. In addition, there were very substantial populations of smaller megabenthic ophiuroids (c. 4979/ha). Together, the total megabenthos are estimated to track over some 17 cm2/m2/d (exploiting 100% of the surface of the seabed in c. 2.5 years). In 1997–2000, the larger megabenthos increased to an abundance of c. 204/ha and were joined by exceptional numbers of a small holothurian species (Amperima rosea, 6457/ha) and ophiuroids (principally Ophiocten hastatum, 53,539/ha). The total megabenthos population was tracking at an estimnated rate of c. 247 cm2/m2/d (exploiting 100% of seabed in just 6 weeks). Coincident with these increases in the abundance and activity of the megabenthos, there were apparently no mass depositions of aggregated phytodetritus to the seabed in the summers of 1997–1999. Mass occurrences of phytodetritus had been noted during the summer months of the three years previously studied (1991, 1993 and 1994), with covering between 50 and 96% of the sediment surface. There is a statistically significant (p<0.02) negative correlation between maximum extent of this seabed cover of phytodetritus and seabed tracking by megabenthos. Additional studies [Lampitt et al., Progr. Ocean. 50 (2001)], indicate that there were no substantial changes in surface ocean primary productivity, in export flux, or in the composition of the flux that might otherwise account for the apparent absence of observable concentrations of phytodetritus during the summers of 1997–1999. We postulate that the marked increase in megabenthic tracking activity resulted in the removal (via consumption, disaggregation, burial etc.) of the bulk of the incoming phytodetrital flux during these years. A simple conceptual model, based on the apparent phytodetrital fluxes observed in 1991 and 1993, suggests that the megabenthos tracking rates estimated for 1997–1999 are sufficient to account for near-total removal of this flux. However, we are not able to estimate other processes removing phytodetritus (i.e. other elements of the benthos) that may also have increased between 1991–1994 and 1997–1999. Other independent studies [e.g. Ginger et al., Progr. Ocean. 50 (2001)] of flux constituents support the possibility that just a few species of megabenthos (e.g. A. rosea, and O. hastatum) could well have consumed a major proportion of the incoming flux and so substantially modified the composition of the organic matter available to other components of the benthos.  相似文献   
9.
High-resolution side-scan mosaics, sediment analyses, and physical process data have revealed that the mixed carbonate/siliciclastic, inner shelf of west-central Florida supports a highly complex field of active sand ridges mantled by a hierarchy of bedforms. The sand ridges, mostly oriented obliquely to the shoreline trend, extend from 2 km to over 25 km offshore. They show many similarities to their well-known counterparts situated along the US Atlantic margin in that both increase in relief with increasing water depth, both are oriented obliquely to the coast, and both respond to modern shelf dynamics. There are significant differences in that the sand ridges on the west-central Florida shelf are smaller in all dimensions, have a relatively high carbonate content, and are separated by exposed rock surfaces. They are also shoreface-detached and are sediment-starved, thus stunting their development. Morphological details are highly distinctive and apparent in side-scan imagery due to the high acoustic contrast. The seafloor is active and not a relict system as indicated by: (1) relatively young AMS 14C dates (<1600 yr BP) from forams in the shallow subsurface (1.6 meters below seafloor), (2) apparent shifts in sharply distinctive grayscale boundaries seen in time-series side-scan mosaics, (3) maintenance of these sharp acoustic boundaries and development of small bedforms in an area of constant and extensive bioturbation, (4) sediment textural asymmetry indicative of selective transport across bedform topography, (5) morphological asymmetry of sand ridges and 2D dunes, and (6) current-meter data indicating that the critical threshold velocity for sediment transport is frequently exceeded. Although larger sand ridges are found along other portions of the west-central Florida inner shelf, these smaller sand ridges are best developed seaward of a major coastal headland, suggesting some genetic relationship. The headland may focus and accelerate the N–S reversing currents. An elevated rock terrace extending from the headland supports these ridges in a shallower water environment than the surrounding shelf, allowing them to be more easily influenced by currents and surface gravity waves. Tidal currents, storm-generated flows, and seasonally developed flows are shore-parallel and oriented obliquely to the NW–SE trending ridges, indicating that they have developed as described by the Huthnance model. Although inner shelf sand ridges have been extensively examined elsewhere, this study is the first to describe them in a low-energy, sediment-starved, dominantly mixed siliciclastic/carbonate sedimentary environment situated on a former limestone platform.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号