首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
大气科学   1篇
地球物理   4篇
地质学   2篇
  2021年   1篇
  2015年   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  1997年   2篇
排序方式: 共有7条查询结果,搜索用时 921 毫秒
1
1.
Recent seismological studies of the Cameroon Volcanic Line show that Mt. Cameroon is the most active centre, so a permanent seismic network of six seismographs was set up in its region between 1984 and 1986. The network was reinforced with temporary stations up till 1987, and the local seismicity was studied. Here we emphasise a statistical analysis of seismic events recorded by the permanent seismic stations. Four swarms lasting 9 to 14 months are identified at intervals of 2–3 years. Most earthquakes are felt (intensity and magnitude, respectively, less than VI MM and 5) during the first three swarms and a few during repose periods. The main focal regions are the northwest and southeast flanks, the Bimbia and Bioko regions in the South of the volcano. Hypocentres are distributed from the surface to 60 km depth indicating crustal and subcrustal activities. The subcrustal events are observed only in the southeast flank, they are the most regular earthquakes with a monthly frequency of 9 to 15 events. They are characteristic earthquakes with magnitude 2.8 ± 0.1. Between 1984 and 1992, their yearly mean time interval between successive events range from 50 to 86 hours. For that period their occurrence can be modelled as a stationary renewal process with a 3-day period. But the analysis of variance shows possible significant differences among yearly means. A Weibull's distribution confirms that the time intervals between successive deep events are not independent, and in 1993 a swarm of deep earthquakes is recorded, hence a non-loglinear magnitude/frequency relation. The deep seismicity is thought to be associated with a zone of weakness (perhaps a magmatic conduit) and may have some close relationship with the magmatic activity.  相似文献   
2.
3.
The Mbengwi recent magmatic formations consist of volcanics and syenites belonging to the same magmatic episode. Lavas form a bimodal basanite-rhyolite alkaline series with a gap between 50 and 62?wt.% SiO2. Mafic lavas (basanite-hawaiite) are sodic while felsic rocks (trachyte-rhyolite-syenites) are sodi-potassic, slightly metaluminous to peralkaline. The geochemical and isotopic characteristics (0.7031?<?(87Sr/86Sr)initial?<?0.7043; 1.03?<?εNdi?<?5.17) of these rocks are similar to those of other rocks from the CVL. The main differentiation process is fractional crystallization with two trends of fractionation. Their Rb/Sr isochron age of 28.2?Ma, almost similar to 27.40?±?0.6?Ma?K/Ar age obtained in a trachyte from neighboring Bamenda Mountains system, precludes any local age migration of an hypothetic hotspot. Mafic lavas have OIB features displaying an isotopic signature similar to that of HIMU mantle source different from FOZO known as source of most parental magmas along the CVL.  相似文献   
4.
Simultaneously acquiring time series of climate, hydrology and hydrochemical data over decades on river systems is pivotal to understand the complex interactions involving rock, soil water, air and biota in the Critical Zone, to build integrated modelling and to propose predictive scenarios. Among the Critical Zone Observatories (CZOs) implemented in the past 25 years, only a few are located in the humid Tropics despite the importance of these regions in terms of population density, fast-changing land use, biodiversity hotspots, biomass stock on continents, size of river systems, etc. Since 1994, weathering and erosion processes and fluxes have been investigated at both local (experimental watershed) and regional scales in the Nyong River Basin (Cameroon) which belongs to the Critical Zone Observatories network named Multiscale TROPIcal CatchmentS (M-TROPICS). The data shared by M-TROPICS in Cameroon are: (1) rainfall; (2) air temperature, air relative humidity, wind speed and direction, and global radiation; (3) stream and river water level; (4) pH, electrical conductivity, water temperature and suspended particulate matter (SPM) concentration; (5) major ion, alkalinity and dissolved organic carbon (DOC) concentrations. The dataset already contributed to describe the water partitioning in these tropical humid watersheds, to better understand the factors controlling chemical weathering and physical erosion in tropical ecosystems, particularly the role of organic matter. The dataset also contributed to calculate elemental weathering fluxes and saprolite production rate and to propose denudation rates on tropical cratonic landscapes. Hydrological modelling allowed quantification of the geographical water sources contributing to streamflow. DOC data were used to determine greenhouse-gas emissions and carbon budgets from African inland waters. However, long-term solute concentrations at the outlet of a small tributary of the Nyong River exhibit non-stationary behaviour over the last 26 years. The processes governing those fluctuations are not yet fully understood and might be related to changes in the hydrological regime, land-cover and land-use. The latter highlights the need for longer time-series and continued support for CZOs particularly in the humid tropics.  相似文献   
5.
Earthquake swarms of Mt Cameroon, West Africa   总被引:1,自引:0,他引:1  
Historical and recent instrumental studies of the central region of the Cameroon Volcanic Line clearly indicate the occurrence of earthquake swarms of volcanic origin. Analyses of more than 3000 micro-earthquakes recorded between 1985 and 1992 show a well-defined seismic pattern characterised by single and swarm events with duration magnitudes between 2 and 3 at depths down to 20 km. On average, the earthquakes here occur at the rate of about 2 events every 3 days with occasional earthquake swarms, which greatly increase this number. The seismic swarms comprising felt earthquakes are shown to be sometimes preceded by, simultaneous with, or followed by swarms from Bimbia and Equatorial Guinea. Mapped epicentres of some of these swarms correspond to regions of volcanic gas emissions and are parallel to the fissures on Mt Cameroon and to the inferred direction of the underlying shear zone.The quiescent periods between swarms are seen to double each year since 1986. This observation was used to predict a major seismic swarm which occurred in 1993. The data coupled with historical data, are used to infer the involvement of a magma chamber in the generation of the earthquake swarms in the region. Since the installation of the network, no eruption has been observed on Mt Cameroon. This warrants more observation in order to study the seismicity that may precede, accompany or follow an eruption of the mountain.  相似文献   
6.
From previously published 14C and K–Ar data, the age of formation of Lake Nyos maar in Cameroon is still in dispute. Lake Nyos exploded in 1986, releasing CO2 that killed 1750 people and over 3000 cattle. Here we report results of the first measurements of major elements, trace elements and U-series disequilibria in ten basanites/trachy-basalts and two olivine tholeiites from Lake Nyos. It is the first time tholeiites are described in Lake Nyos. But for the tholeiites which are in 238U–230Th equilibrium, all the other samples possess 238U–230Th disequilibrium with 15 to 28% enrichment of 230Th over 238U. The (226Ra/230Th) activity ratios of these samples indicate small (2 to 4%) but significant 226Ra excesses. U–Th systematics and evidence from oxygen isotopes of the basalts and Lake Nyos granitic quartz separates show that the U-series disequilibria in these samples are source-based and not due to crustal contamination or post-eruptive alteration. Enrichment of 230Th is strong prima facie evidence that Lake Nyos is younger than 350 ka. The 230Th–226Ra age of Nyos samples calculated with the (226Ra/230Th) ratio for zero-age Mt. Cameroon samples is 3.7 ± 0.5 ka, although this is a lower limit as the actual age is estimated to be older than 5 ka, based on the measured mean 230Th/238U activity ratio. The general stability of the Lake Nyos pyroclastic dam is a cause for concern, but judging from its 230Th–226Ra formation age, we do not think that in the absence of a big rock fall or landslide into the lake, a big earthquake or volcanic eruption close to the lake, collapse of the dam from erosion alone is as imminent and alarming as has been suggested.  相似文献   
7.
Mount Cameroon is an active volcano located in the Gulf of Guinea, west of Central Africa. After the March–April 1999 eruption on the SW flank, another eruption of the volcano occurred in 2000. It took place from three sites on the southwest flank and near the summit. The first eruptive site was located 500 m to the southwest of the summit, at 3900 m altitude. Activity on this site was mainly explosive with no lava flow. The second site was located between 3220 and 3470 m altitude. Lava was emitted along NNE–SSE fissures from this site and flew towards Buea, the main city of the area, stopping ~ 4 km from the first houses. The last site was located in the south western flank at 2750 m altitude. The lava ejected from an old cone near the first 1999 eruptive site was divided into two branches, for a total length of around 1 km. The location of active volcanic cones in 1999 and 2000 seems to be linked to the local tectonics. The pre-eruptive period was characterized by a seismic swarm which may be a precursor recorded in March 2000 by an analogue seismic station. The main shock was a magnitude 3.2 event, and was felt by the population in Ekona town located on the eastern flank. It had a Modified Mercalli intensity of III–IV. When the eruption started, a temporary network of short period 3-component seismic stations was set up around the volcano to improve the monitoring of seismic activity. The co-eruptive period from late May to September was characterized by sequences of earthquake swarms, volcanic tremor and a family of earthquakes having similar waveform and appearing regularly in August and early September. Some of the earthquakes were felt by the population in Buea and its environments. The largest seismic event recorded had a magnitude of 4. During the post-eruptive period from mid-September to December, seismicity returned to its background level of 1–3 earthquakes per 3 days. Hypocenter locations reveal a linear narrow structure under the summit zone which could represent the magmatic conduit of the volcano. The frequency/magnitude relationship revealed a b-value of 1.43 higher than those previously determined, but more representative of volcanic media. Seismic energy release was gradual after the 2000 eruption started.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号