首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
地质学   20篇
  2021年   1篇
  2017年   3篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2006年   5篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
2.
This report presents data on the geological structure and location of the orthopyroxenite inclusion in gneissic enderbites of the Bug granulite–gneiss domain. Three stages of orthopyroxenite formation were identified on the basis of studies of the mineral composition along with the U–Pb and Lu–Hf isotope systems of zircons.  相似文献   
3.
The Ladoga, Russia, and adjacent Sulkava, southeastern Finland, metamorphic complexes are the two largest “granulite” provinces of the Svecofennian domain. In this area, the domain is composed of outer and inner zones. Sulkava is situated in the inner zone, which principally can be compared to the accretionary arc complex of Southern Finland. Ladoga is situated in the outer zone, which is correlated with the accretionary arc complexes of central and Western Finland. The complexes contain different metamorphic assemblages, which are caused by the different composition of the sedimentary protoliths: the rocks of the Sulkava metamorphic complex are higher in Al and K than those of the Ladoga Complex. Pb-Pb step leaching dating was used to determine the age of prograde sillimanite from both complexes. The dates thus obtained constrain metamorphic peaks for the Sulkava and Ladoga complexes at 1799 ± 19 Ma and 1878 ± 7 Ma, respectively, which is consistent with the U-Pb monazite ages of gneisses from both of the complexes. The differences in the ages of the metamorphic minerals from these complexes reflect the Early Svecofennian (1.89–1.86 Ga) and Late Svecofennian (1.83–1.79 Ga) metamorphic stages in the Fennoscandian Svecofennides.  相似文献   
4.
Thermodynamic regime of culmination phase of high-grade metamorphism of the Umba nappe (Lapland allochthon) was studied, and peak metamorphic monazite was dated. Based on calculation of end member reactions, the metamorphic assemblages of aluminous gneisses from the upper and lower parts of the nappe are close to equilibrium. The metamorphic conditions of the rocks are estimated to be about 800°C and 7 kbar in its upper part and 9 kbar in its lower part. The formation of orthopyroxene-sillimanite aggregates points to increasing pressure and temperature at the prograde stage of PT path, whereas cordierite rims mark the onset of decompression and cooling. The pressure difference of 2–2.5 kbar identified by thermobarometric methods between aluminous gneisses from the upper and lower parts of the Umba nappe corresponds to a depth gradient about 7.5 km, which agrees with approximate thickness of the Umba nappe. The study of the eclogitelike rocks developed after the rocks of the Paleoproterozoic Kolvitsa gabbronorite massif made it possible to trace the P-T evolution of metamorphsim: the temperature peak of granulite stage (11 kbar, 860°C) was followed by pressure increase (up to 14 kbar and more), and then decompressional cooling due to the exhumation of the Por’ya Guba nappe together with the Kolvitsa Massif. The U-Pb monazite age of 1904 ± 3 Ma obtained for aluminous gneisses from the upper part of the Umba nappe corresponds within error to the timing of metamorphic events determined from metamorphic zircon in the anorthosites of the Kolvitsa Massif (1907 ± 2 Ma) and zircon from aluminous gneisses in the melange zone (1906 ± 3 Ma). These isotopic data confirm the conclusion of simultaneous high-pressure granulite metamorphism in the upper and lower portions of the Umba nappe.  相似文献   
5.
6.
Baltybaev  Sh. K.  Vivdich  E. S. 《Geotectonics》2021,55(4):502-515
Geotectonics - In our study we characterize the thermodynamic regimes in the thrust zone of the newly formed Paleoproterozoic continental crust of the Svecofennian mobile belt on the outskirts of...  相似文献   
7.
8.
9.
The isotopic–geochemical features of late and postorogenic granites of the S type and ambient migmatites are studied within the Russian part of the Svecofennian orogen of the Fennoscandinavian Shield. The spatial association of leucosomes of migmatites and granites of the S type and their similar petro- and geochemistry and distribution of Pb isotopes are evidence of the genetic similarity of their parental melts. The Borodinskoe pluton has a more primitive 206Pb/207Pb ratio, which indicates the presence of upper and U-poor lower crustal material in the source of granitic magmas. This conclusion is supported by the ?Nt(t) lower value of granites of this pluton relative to those of other plutons of the region.  相似文献   
10.
Paleoarchean granulite-facies metasedimentary rocks (quartzites, garnet quartzites, garnet-pyroxene gneisses, pyroxene-magnetite and magnetite quartzites) attributed to the Dniester-Bug Group of the Ukrainian Shield were studied. On the basis of geochemical data, including REE, the primary composition of these rocks was reconstructed as association of Fe-rich sandstones and sublitharenites, Fe-shales, and BIFs. This sedimentary association is similar to the rocks of other ancient greenstone belts and ascribed to the Algama-type iron formation. The sum of Al2O3, CaO, Na2O, and TiO2, high Zr contents (>100 ppm in quartzites), and the presence of detrital zircon grains of different ages are consistent with the terrigenous nature of sedimentary rocks. The Sm/Nd, Ti/Zr, Sc/Zr, and Ni/Zr ratios indicate the predominance of granitoid rocks in the source areas. The elevated Cr contents suggest that, in addition to granitoids, the source area contained ultramafic rocks. Geochemical characteristics, such as Fe/Mn ratio, low REE contents, and variations of REE versus the sum of Ni, Co, and Cu testify that sedimentation occurred under shallow-water conditions on the continent or its slope, similarly as the formation of ancient (3.5–3.2 Ga) basalt-komatiitic series intercalated with sedimentary rocks in the Pilbara Craton. The age of supracrustal rocks of the Dniester-Bug Group was constrained within the time interval of 3.4–3.2 Ga on the basis of U-Pb zircon dating and determination of Nd isotope composition. The DM model age of quartzites varies from 3.37 to 3.5 Ga. Sedimentary rocks together with volcanic rocks represent the oldest supracrustal association of the East European Platform.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号