首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   5篇
  国内免费   4篇
测绘学   1篇
大气科学   2篇
地球物理   20篇
地质学   50篇
海洋学   1篇
天文学   15篇
自然地理   13篇
  2021年   1篇
  2013年   10篇
  2012年   4篇
  2011年   1篇
  2010年   2篇
  2008年   2篇
  2007年   1篇
  2005年   4篇
  2004年   6篇
  2003年   5篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1998年   1篇
  1997年   11篇
  1996年   9篇
  1995年   3篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1981年   2篇
  1977年   2篇
  1975年   2篇
  1970年   1篇
  1963年   1篇
  1962年   1篇
  1960年   1篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
1.
Previous studies of metapelitic rocks from the core of the southernBrittany metamorphic belt suggest a complex clockwise PTevolution. We use pseudosections calculated for an average subaluminousmetapelite composition in the MnNCKFMASH system and averagePT calculations to investigate in more detail the metamorphicevolution of these rocks. For migmatites, sequential occurrenceof kyanite, kyanite + staurolite and sillimanite suggests thata prograde evolution to P > 8 kbar at T  相似文献   
2.
The Lilloise is an 8 km4 km layered mafic intrusion which cutsthe plateau basalts of the East Greenland Tertiary province.Lilloise was intruded at 50 Ma, 4–5 Ma after cessationof the voluminous tholeiitic magmatism which accompanied riftingof the East Greenland continental margin. Lilloise is unusualamong layered intrusions in the province because it had a hydrousalkali picrite parent magma and generated a late-stage effluxof magmatic water from the intrusion into the aureole rocks.The three major subdivisions of the layered rocks are: olivine-clinopyroxene,olivine-clinopyroxene-plagioclase and plagioclase-amphibolecumulates. Massive subsidence of the intrusion before completesolidification resulted in deformation of the internal layeringand downturn of the bedding in the surrounding basalts. A strikingfeature of the intrusion is the injection of the layered rocksby a plexus of magmatic sheets which formed at the time of subsidence.The composition of these sheets is representative of the fractionationtrend of the intrusion and ranges from hawaiite to mildly saturatedquartz trachyte. The fractionation trend is successfully explainedby extraction of cumulus minerals of the layered rocks froma parent magma represented by alkali picrite dykes of a contemporaneousregional dyke swarm. Saturated to mildly over-saturated syenitesare a major component of the East Greenland province and theLilloise intrusion is illustrative of an important magmatictrend towards such compositions at this stage in the openingof the North Atlantic. KEY WORDS: Lilloise intrusion; East Greenland; alkali picrite magma; layered intrusion; magmatic differentiation *Corraponding author  相似文献   
3.
报告了中、美两国在喜马拉雅山区进行的第一次深反射地震试验的结果.试验剖面南起喜马拉雅山山脊南亚东县的帕里镇,向北穿过喜马拉雅山脊的荡拉,到达康马南的萨马达.剖面长约100km.共中心点(CMP)叠加剖面上显示出:1.在地壳中部有一强反射带,向北缓倾斜下去,延长达100km以上.它可能代表了一个活动的逆冲断裂或是一条巨大的拆离带,印度地壳整体或下地壳沿此拆离层俯冲到藏南之下.2.上部地壳的反射很丰富,显示了上地壳存在着大规模的叠瓦状结构.3.下地壳的反射同相轴呈现短而有规律的分布,显示了塑性流变特征.4.在测线南部莫霍反射明显,深度达72-75km.发现南部有双莫霍层的存在.5.试验中还取得莫霍层下面32,38,48s等双程走时的多条反射,向北倾斜,反射同相轴延续较长,信息丰富,反映了上地幔的成层结构和变形特征.这些结果对印度大陆地壳整体或其下地壳俯冲到藏南特提斯喜马拉雅地壳之下,并导致西藏南端地壳增厚的观点,给予了实质性的支持.  相似文献   
4.
ABSTRACT The high-grade migmatitic core to the southern Brittany metamorphic belt has mineralogical and textural features that suggest high-temperature decompression. The chronology of this decompression and subsequent cooling history have been constrained with 40Ar/39 Ar ages determined for multigrain concentrates of hornblende and muscovite prepared from amphibolite and late-orogenic granite sheets within the migmatitic core, and from amphibolite of the structurally overlying unit. Three hornblende concentrates yield plateau isotope correlation ages of c. 303–298 Ma. Two muscovite concentrates record well-defined plateau ages of c. 306–305 Ma. These ages are geologically significant and date the last cooling through temperatures required for intracrystalline retention of radiogenic argon. The concordancy of the hornblende and muscovite ages suggest rapid post-metamorphic cooling. Extant geochronology and the new 40Ar/39Ar data suggest a minimum time-integrated average cooling rate between c. 725 °C and c. 125 °C of c. 14 ± 4°C Ma-1, although below 600 °C the data permit an infinitely fast rate of cooling. Mineral assemblages and reaction textures in diatexite migmatites suggest c. 4 kbar decompression at 800–750 °C. This must have pre-dated the rapid cooling. Emplacement of two-mica granites into the metamorphic belt occurred between 345 and 300 Ma. The youngest plutons were emplaced synkinematically along shallow-dipping normal faults interpreted to be reactivated Eo-Variscan thrusts. A penetrative, west-plunging stretching lineation developed in these granites suggests that extension was orogen-parallel. Extension was probably related to regional uplift and gravitational collapse of thermally weakened crust during constrictional (escape) tectonics in this narrow part of the Variscan orogen. This followed slab breakoff during the terminal stages of convergence between Gondwana and Laurasia; detachment may have been consequent upon a change in kinematics leading to dextral displacement within the orogen. Dextral ductile strike-slip displacement was concentrated in granites emplaced synkinematically along the South Armorican Shear Zone. Rapid cooling is interpreted to have resulted from tectonic unroofing with emplacement of granite along decollement surfaces. The high-grade migmatitic core of the southern Brittany metamorphic belt represents a type of metamorphic core complex formed during orogen-parallel extensional unroofing and regional-scale ductile flow.  相似文献   
5.
Meltwaters collected from boreholes drilled to the base of the Haut Glacier d'Arolla, Switzerland have chemical compositions that can be classified into three main groups. The first group is dilute, whereas the second group is similar to, though generally less concentrated in major ions, than contemporaneous bulk glacial runoff. The third group is more concentrated than any observed bulk runoff, including periods of flow recession. Waters of the first group are believed to represent supraglacial meltwater and ice melted during drilling. Limited solutes may be derived from interactions with debris in the borehole. The spatial pattern of borehole water levels and borehole water column stratification, combined with the chemical composition of the different groups, suggest that the second group represent samples of subglacial waters that exchange with channel water on a diurnal basis, and that the third group represent samples of water draining through a ‘distributed’ subglacial hydraulic system. High NO3 concentrations in the third group suggest that snowmelt may provide a significant proportion of the waters and that the residence time of the waters at the bed in this particular section of the distributed system is of the order of a few months. The high NO3 concentrations also suggest that some snowmelt is routed along different subglacial flowpaths to those used by icemelt. The average SO2−4: (HCO3 + SO2−4) ratio of the third group of meltwaters is 0.3, suggesting that sulphide oxidation and carbonate dissolution (which gives rise to a ratio of 0.5) cannot provide all the HCO3 to solution. Hence, carbonate hydrolysis may be occurring before sulphide oxidation, or there may be subglacial sources of CO2, perhaps arising from microbial oxidation of organic C in bedrock, air bubbles in glacier ice or pockets of air trapped in subglacial cavities. The channel marginal zone is identified as an area that may influence the composition of bulk meltwater during periods of recession flow and low diurnal discharge regimes. © 1997 by John Wiley & Sons, Ltd.  相似文献   
6.
7.
Xenoliths of quartz‐absent Fe‐rich aluminous metapelite are common within the platinum group element‐rich mafic/ultramafic magmatic rocks of the Platreef. Relative to well‐characterized protoliths, the xenoliths are strongly depleted in K2O and H2O, and have lost a substantial amount of melt (>50 vol.%). Mineral equilibria calculations in the NCKFMASHTO system yield results that are consistent with observations in natural samples. Lower‐grade rocks that lack staurolite constrain peak pressures to ~2.5 kbar in the southern Platreef. Smaller xenoliths and the margins of larger xenoliths comprise micro‐diatexite rich in coarse acicular corundum and spinel, which record evidence for the metastable persistence of lower‐grade hydrous phases and rapid melting consequent on a temperature overstep of several hundred degrees following their incorporation in the mafic/ultramafic magmas. In the cores of larger xenoliths, temperatures increased more slowly enabling progressive metamorphism by continuous prograde equilibration and the loss of H2O by subsolidus dehydration; the H2O migrated to xenolith margins where it may have promoted increased melting. According to variations in the original compositional layering, layers became aluminosilicate‐ and/or cordierite‐rich, commonly with spinel but only rarely with corundum. The differing mineralogical and microstructural evolution of the xenoliths depends on heating rates (governed by their size and, therefore, proximity to the Platreef magmas) and the pre‐intrusive metamorphic grade of the protoliths. The presence or absence of certain phases, particularly corundum, is strongly influenced by the degree of metastable retention of lower‐grade hydrates in otherwise identical protolith bulk compositions. The preservation of fine‐scale compositional layering that is inferred to be relict bedding in xenolith cores implies that melt loss by compaction was extremely efficient.  相似文献   
8.
Coleman & Lee's discovery that aragonite is a widespreadmetamorphic mineral in California glaucophane schists is confirmedand amplified. Methods of microscopic distinction between aragonite,calcite, and dolomite, including a universal-stage technique,are described. Further data are recorded regarding the paragenesisof aragonite-bearing glaucophane and lawsonite schists. Carbonatesin the greenschist facies are found to be exclusively calciteand dolomite. In many Californian metamorphic aragonites partialinversion to calcite has been observed. This appears to be anequal-volume replacement in which an a axis and an edge [f:f] of calcite—both directions of Closest spacing of Ca++ions—commonlyare parallel to of the crystal axes a, b, and c of aragonite. The problem of survival of metamorphic aragonite through a necessarilylong period of post-metamorphic unloading is approached by experimentalexploration of the kinetics of the aragonite calcite transformation.It is found that Californian aragonite could survive unloadingfrom a depth of 20 km if the linear temperature gradient were10? C per km, but not appreciably higher. Available experimentaldata are consistent with crystallization of aragonite, jadeite,and lawsonite at depths of 20–30 km if a gradient of 10?C per km is assumed. The corresponding conditions of the glaucophane-schistfacies (T = 2OO?-3OO? C, P = 6000-9000 bars) are attributedessentially to deep burial in regions (subsiding geosyn-clines)of unusually low temperature gradient (10? C per km).  相似文献   
9.
Sapphirine granulites from a new locality in the Palni Hill Ranges, southern India, occur in a small enclave of migmatitic, highly magnesian metapelites (mg=85–72) within massive enderbitic orthogneiss. They show a variety of multiphase reaction textures that partially overprint a coarse-grained high-pressure assemblage of Bt+Opx+Ky+Grt+Pl+Qtz. The sequence of reactions as deduced from the corona and symplectite assemblages, together with petrogenetic grid considerations, records a clockwise P–T evolution with four distinct stages. (1) Equilibration of the initial high-P assemblage in deep overthickened crust (12 kbar/800–900 °C) was followed by a stage of near-isobaric heating, presumably as a consequence of input of extra heat provided by the voluminous enderbitic intrusives. During heating, kyanite was converted to sillimanite, and biotite was involved in a series of vapour-phase-absent melting reactions, which resulted in the ultra-high-temperature assemblage Opx+Crd+Kfs+Spr±Sil, Grt, Qtz, Bt, coexisting with melt (equilibration at c. 950–1000° C/11–10 kbar). (2) Subsequently, as a result of decompression of the order of 4 kbar at ultra-high temperature, a sequence of symplectite assemblages (Opx+Sil+Spr/Spr+Crd→Opx+Spr+Crd→Opx+Crd→Opx+Crd+Spl/Crd+Spl) developed at the expense of garnet, orthopyroxene and sillimanite. This stage of near-isothermal decompression implies rapid ascent of the granulites into mid-crustal levels, possibly due to extensional collapse and erosion of the overthickened crust. (3) Development of late biotite through back-reaction of melt with residual garnet indicates a stage of near-isobaric cooling to c. 875 °C at 7–8 kbar, i.e. relaxation of the rapidly ascended crust to the stable geotherm. (4) A second period of near-isothermal exhumation up to c. 6–5 kbar/850 °C is indicated by the partial breakdown of late biotite through volatile phase-absent melting reactions. Available isotope data suggest that the early part of the evolutionary history (stages 1–3) is presumably coeval with the early Proterozoic metamorphism in the extended granulite terrane of the Nilgiri, Biligirirangan and Shevaroy Hills to the north, while the exhumation of the granulites from mid-crustal levels (stage 4) occurred only during the Pan-African thermotectonic event, which led to the accretion of the Kerala Khondalite Belt to the south.  相似文献   
10.
Southwest Japan is divided into Outer and Inner Zones by the Median Tectonic Line (MTL), a major transcurrent fault. The Outer Zone is composed of the Sambagawa (high-pressure intermediate or high P/T type metamorphism), Chichibu and Shimanto Belts. In the Inner Zone, the Ryoke Belt (andalusite– sillimanite or low P/T type metamorphism) was developed mainly within a Jurassic accretionary complex. This spatial relationship between high P/T type and low P/T type metamorphic belts led Miyashiro to the idea that metamorphic belts were developed as ‘paired’ systems. Textural relationships and petrogenetically significant mineral assemblages in pelites from the Ryoke Belt imply peak PT conditions of ≈5 kbar and up to 850 °C in migmatitic garnet–cordierite rocks from the highest-grade metamorphic zone. It is likely that the thermal anomaly responsible for metamorphism of the Ryoke Belt was related to a segment of the Farallon–Izanagi Ridge as it subducted under the eastern margin of the Asian continent during the Cretaceous. The sequence of mineral assemblages developed in pelites implies a metamorphic field gradient with shallow dP/dT slope, inferred to have been generated by a nested set of hairpin-like ‘clockwise’PT paths. These PT paths are characterized by limited prograde thickening, minor decompression at peak-T , and near-isobaric cooling, features that may be typical of PT paths in low P/T type metamorphic belts caused by ridge subduction. A ridge subduction model for the Ryoke Belt implies that juxtaposition of the high-P/T metamorphic rocks of the Sambagawa Belt against it was a result of terrane amalgamation. Belt-parallel ductile stretching, recorded as syn-metamorphic, predominantly constrictional strain in both Ryoke and Sambagawa Belt rocks, and substantial sinistral displacement on the MTL are consistent with left-lateral oblique convergence. Diachroneity in fast cooling of the Ryoke Belt is implied by extant thermochronological data, and is inferred to relate to progressive SW to NE docking of the Sambagawa Belt. Thus, an alternative interpretation of ‘paired’ metamorphic belts in Japan is that they represent laterally contemporaneous terranes, rather than outboard and inboard components of a trench/arc ‘paired’ system. Amalgamation of laterally contemporaneous terranes during large translations of forearcs along continental margins may explain other examples of ‘paired’ metamorphic belts in the geological record.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号