首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地质学   1篇
天文学   4篇
  2007年   1篇
  2006年   1篇
  2001年   2篇
  1996年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Abstract— The presence of isotopic anomalies is the most unequivocal demonstration that meteoritic material contains circumstellar or interstellar components. In the case of organic compounds in meteorites and interplanetary dust particles (IDPs), the most useful isotopic tracer has been deuterium (D). We discuss four processes that are expected to lead to D enrichment in interstellar materials and describe how their unique characteristics can be used to assess their relative importance for the organics in meteorites. These enrichment processes are low‐temperature gas phase ion‐molecule reactions, low‐temperature gas‐grain reactions, gas phase unimolecular photodissociation, and ultraviolet photolysis in D‐enriched ice mantles. Each of these processes is expected to be associated with distinct regiochemical signatures (D placement on the product molecules, correlation with specific chemical functionalities, etc.), especially in the molecular population of polycyclic aromatic hydrocarbons (PAHs). We describe these differences and discuss how they may be used to delineate the various interstellar processes that may have contributed to meteoritic D enrichments. We also briefly discuss how these processes may affect the isotopic distributions in C, O, and N in the same compounds.  相似文献   
2.
The Kap Edvard Holm Layered Series forms part of the East GreenlandTertiary Province, and was emplaced at shallow crustal level(at depths corresponding to a pressure of 1–2 kbar) duringcontinental break-up. It consists of two suites: a gabbro suitecomprising olivine and oxide gabbros, leucocratic olivine gabbrosand anorthosites, and a suite of wehrlites that formed fromthe intrusion of the gabbros during their solidification bya hydrous, high-MgO magma. Ion microprobe analyses of clinopyroxenereveal chemical contrasts between the parental melt of the wehrlitesuite and that of the gabbro suite. Thin sills (1–2 mthick) of the wehrlite suite, however, have clinopyroxene compositionssimilar to the gabbro suite, and were formed by interactionwith interstitial melts from the host layered gabbros. All evolvedmembers of the gabbro suite have elevated Nd, Zr and Sr concentrationsand Nd/Yb ratios, relative to the melt parental to the gabbrosuite. These characteristics are attributed to establishmentof a magma chamber at depths corresponding to a pressure of10 kbar, where melts evolved before injection into the low-pressuremagma chamber. Anorthosites of the gabbro suite are believedto have crystallized from such injections. The melts becamesupersaturated in plagioclase by the pressure release that followedtransportation to the low-pressure magma chamber after initialfractionation at 10 kbar. The most evolved gabbros formed bysubsequent fractionation within the low-pressure magma chamber.Our results indicate that high-pressure fractionation may beimportant in generating some of the lithological variationsin layered intrusions. KEY WORDS: fractionation; ion microprobe; layered intrusions; rift processes; trace elements *Corresponding author.  相似文献   
3.
Abstract— The polycyclic aromatic nitrogen heterocycle (PANH) quinoline (C9H7N) was frozen at 20 K in interstellar ice analogs containing either pure water or water mixed with methanol or methane and exposed to ultraviolet (UV) radiation. Upon warming, the photolysis products were analyzed by high‐performance liquid chromatography and nanoscale liquid chromatography‐electrospray ionization mass spectrometry. A suite of hydroxyquinolines, which were formed by the addition of oxygen atoms to quinoline, was observed as the primary product in all the ices. Quinoline N oxide was not formed, but five hydroxyquinoline isomers were produced with no clear dominance of one isomer. Reduction products, formed by hydrogen atom addition, were also created. Ices created at 20 K with H2O: quinoline ratios of 10:1 to 100:1 showed similar product distributions to those at 122 K, with no apparent temperature or concentration dependence. Increasing the UV dose led to a decrease in overall yield, indicating that quinoline and its products may be photo‐destroyed. Methylquinolines were formed upon photolysis of the methanol‐ and methane‐containing ices. In addition, possible methoxyquinolines or quinoline methylene alcohols were formed in the methanol‐containing ice, while methylhydroxyquinolines were created in the methane‐containing ice. This work indicates that oxidation of PANHs could occur in icy extraterrestrial environments and suggests that a search for such compounds in carbonaceous meteorites could illuminate the possible link between interstellar ice chemistry and meteoritic organics. Given the importance of oxidized and alkylated PANHs to biochemistry, the formation and delivery of such molecules to the early Earth may have played a role in the origin and evolution of life.  相似文献   
4.
Abstract— The polycyclic aromatic hydrocarbon (PAH) anthracene was oxidized by exposure to ultraviolet (UV) radiation in H2O ice under simulated astrophysical conditions, forming several anthracene ketones (9‐anthrone, 1,4‐anthraquinone, and 9,10‐anthraquinone) and alcohols (1‐anthrol and 2‐anthrol). Two of the ketones produced have been detected in the Murchison meteorite but, to our knowledge, there has been no search for the alcohols or other oxidized anthracenes in meteorites. These results seem consistent with the possibility that interstellar ice photochemistry could have influenced the inventory of aromatics in meteorites. Since quinones are also fundamental to biochemistry, their formation in space and delivery to planets is relevant to studies relating to the habitability of planets and the evolution of life.  相似文献   
5.
Abstract— The polycyclic aromatic hydrocarbon (PAH) naphthalene was exposed to ultraviolet radiation in H2O ice under astrophysical conditions, and the products were analyzed using infrared spectroscopy and high‐performance liquid chromatography. As we found in our earlier studies on the photoprocessing of coronene in H2O ice, aromatic alcohols and ketones (quinones) were formed. The regiochemistry of the reactions is described and leads to specific predictions of the relative abundances of various oxidized naphthalenes that should exist in meteorites if interstellar ice photochemistry influenced their aromatic inventory. Since oxidized PAHs are present in carbon‐rich meteorites and interplanetary dust particles (IDPs), and ubiquitous in and fundamental to biochemistry, the delivery of such extraterrestrial molecules to the early Earth may have played a role in the origin and evolution of life.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号