首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
大气科学   16篇
地球物理   2篇
地质学   3篇
海洋学   4篇
天文学   1篇
  2022年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2013年   2篇
  2012年   1篇
  2009年   1篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1995年   2篇
  1993年   1篇
  1988年   1篇
  1987年   1篇
  1982年   1篇
  1981年   1篇
  1976年   1篇
  1975年   1篇
  1973年   3篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
Polynuclear aromatic hydrocarbons (PAH), chlorinated pesticides, and polychlorinated biphenyls (PCB) concentrations were determined in sediment and oysters to provide information on the current status of the concentration of these contaminants in Gulf of Mexico coastal areas removed from point sources of input. Coprostanol analyses of sediments showed that anthropogenic materials are associated with the sediments at all 153 stations sampled. The levels of contaminants encountered are low compared with areas of known contamination. Average PAH concentrations are nearly the same in oysters and sediments, although the molecular weight distribution is different. Average DDT and PCB concentrations are higher by a factor of 10 to 130 in oysters as compared to sediments. Continued sampling and analyses will allow for long-term trends in the concentrations of these contaminants to be determined.  相似文献   
2.
3.
4.
The High Energy Transient Experiment (HETE), scheduled for launch this year, is a small satellite dedicated to multiwavelength observations of -ray and X-ray bursts. The HETE spacecraft will be equipped with gamma-ray detectors, X-ray detectors with a coded mask, and ultraviolet-sensitive CCD cameras. The UV cameras on HETE are wide-field imagers which will a) provide UV images of the regions in which -ray or X-ray bursts are detected, before, duringand after the burst, b) detect UV transients, whether associated with a high-energy transient or not, c) monitor the brightnesses of field stars for variability over a wide range of timescales, and d) serve as star trackers for HETE. In this poster, we describe the HETE UV instrumentation, control software, and data products.  相似文献   
5.
This study examined the fate of Prudhoe Bay crude oil in nearshore sediments of the Beaufort Sea, in situ, with emphasis on the rôle of microorganisms in the weathering process. The results indicate that oil is degraded in Arctic sediments very slowly; only after 1 year's exposure was biodegradation evident. Several factors probably contributed to the slow rate of microbial weathering, including: limited populations of hydrocarbon utilising microorganisms; localised high oil concentrations; low temperatures; limiting nutrient concentrations (unfavourable C:N and C:P ratios); low oxygen tensions and limited circulation of interstitial waters in fine-grained sediments. Abiotic weathering of the oil was also slow, with limited loss of low molecular weight aliphatic and aromatic hydrocarbons during 2 years' exposure. Significant features of the overall weathering process were: lack of initial loss of low molecular weight compounds; aliphatic compounds were not preferentially degraded over aromatic compounds and C17, and lower molecular weight normal alkanes were preferentially degraded over higher molecular weight alkanes. The results of this study indicate that hydrocarbons will persist relatively unaltered for several years if Beaufort Sea sediments are contaminated with petroleum.  相似文献   
6.
7.
On 18–19 February 1979, an intense cyclone developed along the east coast of the United States and produced heavy snowfall accumulations from Virginia to southeast New York. A series of forecast experiments was conducted to assess the accuracy of the GLA model's prediction of this storm and the importance of oceanic heat and moisture fluxes and initial data to the cyclogenesis. The GLA model forecast from the GLA NOSAT analysis at 0000 GMT 18 February correctly predicted that intense coastal cyclogenesis and heavy precipitation would occur, even though important subsynoptic details of the development were underestimated or not forecast. A repetition of this forecast with surface heat and moisture fluxes eliminated failed to predict any cyclogenesis while a similar forecast with only the surface moisture flux excluded showed only very weak cyclonic development. An extended-range forecast from 0000 GMT 16 February as well as forecasts from the GLA FGGE analysis or the NMC analysis at 0000 GMT 18 February interpolated to the GLA grid predicted weaker coastal low development than the forecast from the NOSAT analysis.Detailed examination of these forecasts shows that diabatic heating resulting from oceanic fluxes increased low-level baroclinicity, decreased static stability and significantly contributed both to the generation of low-level cyclonic vorticity, and to the intensification and slow rate of movement of an upper-level ridge over the western Atlantic. As an upper-level short-wave trough approached this ridge, the diabatic heating associated with the release of latent heat intensified and the gradient of vorticity, vorticity advection and upper-level divergence in advance of the trough were increased, which provided strong forcing for the surface cyclogenesis.An examination of the NMC and GLA analyses indicated that a weaker representation of the upper-level trough in the interpolated NMC analysis was primarily responsible for the resulting forecast differences. Comparison of the GLA FGGE and NOSAT initial analyses showed that the FGGE analysis of cloud-track wind data probably underestimated the maximum wind speeds associated with an upper-level jet streak near the east coast. This diminished the effect of the oceanic fluxes in the forecast from the FGGE analysis and resulted in weaker cyclogenesis.  相似文献   
8.
Mineralogy and Petrology - Coronae between olivine and plagioclase are a common replacement texture in mafic rocks by magmatic and metamorphic processes. Mafic dykes from Palghat Cauvery Shear Zone...  相似文献   
9.
Summary  The relationship between European surface temperature and winds over the eastern North Atlantic are investigated for the years 1988 to 1997. Daily Special Sensor Microwave Imager SSM/I observations are used to evaluate a monthly surface wind index that quantifies the influence of southwesterly flow. Our wind index and the monthly-mean surface-air temperatures in late winter and early spring over France and northern-latitude Europe are highly correlated. In February, the year-to-year increases/decreases match every year for France (correlation of 0.82 with the Index); and every year with just one exception for Europe (correlation with the Index of 0.76 for a longitudinal strip through Europe 45–50° N, and 0.73 for the 50–60° N strip). In March, the increases/decreases of the wind Index and of the temperatures for France also match, but the correlation with the Index is lower, 0.65. The high correlation between our Index and the large interannual fluctuations in the monthly temperature in late winter and early spring indicate that the onset of the spring conditions in Europe is significantly influenced by the wind patterns over the eastern North Atlantic. Coinciding with the fluctuations from warm-Europe/high-Index winter to the opposite conditions, we observe “seesaw” effects, fluctuations over the North Atlantic, in opposite directions in the east (25–5° W), and the west (65–45° W). In the low-Index years we find that: (a) the surface-air temperatures in the west are appreciably higher than in the east (but slightly lower in the high-Index year), and (b) the difference between the 500 mb meridional wind in the west and that in the east is positive and large, exceeding 10 m s−1 (but it becomes negative and small in the high-Index years). The “seesaw” effects suggest that a positive feedback exits between these cross-Atlantic temperature differences and the surface winds. Received August 7, 1998 Revised April 23, 1999  相似文献   
10.
We investigated and evaluated the occurrence of fault zone tracer gases (CO2, He, Rn), volatile organohalogens (CH3Cl, CHCl3, CHBr3), alkanes and limonene in soil and nest gases of red wood ants (RWA) in comparison to ambient air, in a seismically active area. In this new approach, we compared RWA-free areas to RWA-areas by combining different investigation and analytical methods. In soil gas, the fault zone tracer gas Rn was surprisingly highly correlated to limonene, suggesting a combination of biotic production of limonene and abiotic degassing of Rn in a seismically active area; moderate correlations were found with trihalomethanes and other halocarbons. In RWA nests a variety of elevated concentrations of haloforms were found, while remaining below the atmospheric background values in RWA-free areas. The evidence of CHCl3 in RWA nests is the first record. Its average concentrations in nests of F. rufa and F. polyctena were up to 3 fold higher than atmospheric background and up to 28–70 fold higher compared to e.g. volcanic emissions being considered as one of its main geogenic sources. Thus, RWA nests could possibly be an additional source for CHCl3 liberation. Consequently, apart from RWA being bioindicators for seismically active degassing faults, they might also be used as bioindicators for CHCl3 formation in forest soils. Although we cannot yet differentiate between a geogenic/abiotic and a biotic formation. RWA nests will have to be reconsidered for halocarbon formation in future quantifications of geochemical cycles at global scale, since they impact organic soil chemistry through biotic and/or abiotic pathways. Therefore, further larger-scale research in different tectonic settings but also in well-known CHCl3 “hot spot” study areas such as the Klosterhede area (Denmark) should focus directly on gas sampling from confirmed active fault systems. Nests of other ant species should be addressed to compare seasonal, diurnal and nocturnal variations of degassing procedures in relation to earth tides, different geologic settings, and tectonic events such as earthquakes and on quantifying the fluxes to the atmosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号