首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   2篇
地球物理   1篇
地质学   13篇
  2021年   1篇
  2020年   1篇
  2018年   3篇
  2017年   2篇
  2015年   2篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
3D finite strain analyses and kinematic vorticity measurements were carried out on the Loghon Anticline within the HP‐LT Sanandaj–Sirjan metamorphic belt (Neyriz area, SW Iran). Rƒ/φ and Fry methods were used on the strain markers (e.g. deformed fossils) to interpret geometric relationships between the fold axis, strain ellipsoid axes and shear zone boundaries. The results indicate the predominance of prolate strain in the anticline. Quantitative kinematic analyses show that the Wk parameter is 0. 67 ± 0. 06 (i.e. pure‐shear dominated non‐coaxial flow). This study quantitatively supports the establishment of a dextral transpressive system, which is responsible for the development of the large‐scale right‐lateral shear zones that strike sub‐parallel to the major folds. Flexural shear combined with regional dextral‐shear is suggested to be the most common mechanism of folding in this area. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
2.
This paper presents a u‐p (displacement‐pressure) semi‐Lagrangian reproducing kernel (RK) formulation to effectively analyze landslide processes. The semi‐Lagrangian RK approximation is constructed based on Lagrangian discretization points with fixed kernel supports in the current configuration. As a result, it tracks state variables at discretization points while allowing extreme deformation and material separation that is beyond the capability of Lagrangian formulations. The u‐p formulation following Biot theory is incorporated into the formulation to describe poromechanics of saturated geomaterials. In addition, a stabilized nodal integration method to ensure stability of the domain integration and kernel contact algorithms to model contact between bodies are introduced in the u‐p semi‐Lagrangian RK formulation. The proposed method is verified with several numerical examples and validated with an experimental result and the field data of an actual landslide.  相似文献   
3.
Spatial differences of Quaternary deformation and intensity of tectonic activity are assessed through a detailed quantitative geomorphic study of the fault‐generated mountain fronts and alluvial/fluvial systems around the Maharlou Lake Basin in the Zagros Fold–Thrust Belt of Iran. The Maharlou Lake Basin is defined as an approximately northwest–southeast trending, linear, topographic depression located in the central Zagros Mountains of Iran. The lake is located in a tectonically active area delineated by the Ghareh and Maharlou faults. Combined geomorphic and morphometric data reveal differences between the Ghareh and Maharlou mountain front faults indicating different levels of tectonic activity along each mountain front. Geomorphic indices show a relatively high degree of tectonic activity along the Ghareh Mountain Front in the southwest, in contrast with less tectonic activity along the Ahmadi Mountain Front northeast of the lake which is consistent with field evidence and seismotectonic data for the study area. A ramp valley tectonic setting is proposed to explain the tectonosedimentary evolution of the lake. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
4.
The Permian–Triassic boundary (PTB) is a world‐wide event characterized by the most extensive mass extinction in the history of life. In the Persian Gulf, the rock record of this time interval host one of the most important hydrocarbon reserves in the world: the South Pars Gas Field and its southern extension, the North Dome (or North Field). These carbonate and evaporite successions were sampled in eight wells for petrographic, geochemical and porosity–permeability studies. An important characteristic of the Dalan and Kangan formations is the centimetre‐scale lithological heterogeneities caused by facies changes and diagenetic imprints that led to the compartmentalization of these reservoirs. These Permian–Triassic (P‐T) sediments were deposited in a shallow marine homoclinal ramp. The PTB in this hydrocarbon field is represented by a reworked coarse‐grained intraclastic/bioclastic grainstone facies deposited during a marine transgression. Prolonged subaerial exposure in the P‐T transition caused hypersaline and meteoric diagenesis, including extensive cementation, dolomitization and some dissolution, influencing reservoir characteristics of bordering units. Both δ18O and δ13C values in this succession mirror worldwide excursions typical of other P‐T sections, with some variations due to diagenetic alterations. A pronounced decline in 87Sr/86Sr values, reflective of global seawater geochemistry for most of the Permian is evident in our data. Reservoir quality declines through the late Permian, as a result of facies change and diagenesis. The Late Permian is succeeded by a Triassic transgressive facies and decline in reservoir quality. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
5.
This paper investigates the impact of active tectonics on the geomorphic processes and landscape evolution along the Kazerun Fault Zone (KFZ) in the Zagros Mountains of Iran using spatial analysis of geomorphic indices. We document how topography and morphology are influenced by active tectonic deformation. The Zagros fold–thrust belt is an area of active crustal shortening where northwest–southeast oriented fault‐related folds become younger from north to south and from southeast to northwest. This temporal and spatial evolution of the belt was tested using geomorphic indices of active tectonics that include mountain front sinuosity index (Smf), the valley width/height ratio (Vf), drainage basin asymmetry factor, hypsometric integral, drainage basin shape ratio and mean axial slope of the channel. Change in the geomorphic indices is the result of active fold growth and change in the uplift rate. Decreasing Smf and Vf values from north (Smf = 2.01; Vf = 0.5) to south (Smf = 1.12; Vf = 0.2) and from southeast (Smf = 1.84; Vf = 0.8) to northwest (Smf = 1.54; Vf = 0.1) points to a migration of the active crustal shortening towards W–SW. The combined geomorphic (field evidences) and morphometric data (quantitative analysis of geomorphic indices) provide evidence of relative variation in the tectonic activity along the Kazerun Fault Zone and related landforms. The utilization of geomorphic parameters with comparison to the field observations exhibits change in relative tectonic activities mostly corresponding to the change in mechanism of the prominent fault zones in the study area. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
6.
Significant potential exists for CO2 sequestration in coalbed methane reservoirs of the Black Warrior basin. Reservoir simulation is an appropriate approach to estimate both the storage capacity and methane recovery enhancement. However, prior to a reliable reservoir modeling and simulation, conducting an accurate and comprehensive reservoir characterization study is necessary. The purpose of the present study is twofold: (a) to provide a rigorous reservoir characterization study required for modeling Mary Lee coal group in the Blue Creek field of the Black Warrior basin; (b) to run fluid flow simulations to predict the performance of ECBM process applied to an under pressured zone of the Mary Lee coal group. According to the current well configuration of Blue Creek field, three applicable well patterns, namely a direct line drive, an inverted 5-spot and a normal 5-spot were separately (i.e., in three distinct cases) used for simulating ECBM. Simulations were run on an approximately 32 ha (80-acre) drainage area, and included coal matrix shrinkage/swelling effects. The injected gas was assumed to be pure CO2. Using an inverted 5-spot pattern, simulations predicted that after 7.5 years of CO2 injection, approximately 32,000 tonnes of CO2 would be sequestered per 32 ha of this zone and that methane recovery would be enhanced by 36 %. Using a normal 5-spot pattern, CO2 breakthrough would occur 2.4 years earlier, and about 40,000 tonnes CO2 would be sequestered. However, methane production would be enhanced by 33 %. Considering methane recovery enhancement, direct line drive pattern delivered poor results in comparison with two other patterns. As expected, the results also showed that CO2 injection would increase water production.  相似文献   
7.
The purpose of current study is to produce groundwater qanat potential map using frequency ratio (FR) and Shannon's entropy (SE) models in the Moghan watershed, Khorasan Razavi Province, Iran. The qanat is basically a horizontal, interconnected series of underground tunnels that accumulate and deliver groundwater from a mountainous source district, along a water- bearing formation (aquifer), and to a settlement. A qanat locations map was prepared for study area in 2013 based on a topographical map at a 1:50,000-scale and extensive field surveys. 53 qanat locations were detected in the field surveys. 70 % (38 locations) of the qanat locations were used for groundwater potential mapping and 30 % (15 locations) were used for validation. Fourteen effective factors were considered in this investigation such as slope degree, slope aspect, altitude, topographic wetness index (TWI), stream power index (SPI), slope length (LS), plan curvature, profile curvature, distance to rivers, distance to faults, lithology, land use, drainage density, and fault density. Using the above conditioning factors, groundwater qanat potential map was generated implementing FR and SE models, and the results were plotted in ArcGIS. The predictive capability of frequency ratio and Shannon's entropy models were determined by the area under the relative operating characteristic curve. The area under the curve (AUC) for frequency ratio model was calculated as 0.8848. Also AUC for Shannon's entropy model was 0.9121, which depicts the excellence of this model in qanat occurrence potential estimation in the study area. So the Shannon's entropy model has higher AUC than the frequency ratio model. The produced groundwater qanat potential maps can assist planners and engineers in groundwater development plans and land use planning.  相似文献   
8.
Nafisi  Ashkan  Liu  Qianwen  Montoya  Brina M. 《Acta Geotechnica》2021,16(10):3239-3251
Acta Geotechnica - Bio-mediated techniques have the potential to be an eco-friendly and sustainable solution for engineering problems in the presence of unfavorable soil conditions. During the...  相似文献   
9.
Faghih  A.  Soleimani  M.  Partabian  A. 《Geotectonics》2020,54(5):705-712
Geotectonics - Kinematic characteristics of mylonite rocks in the footwall of the Chapedony detachment shear zone was investigated to highlight the exhumation style of the Chapedony Metamorphic...  相似文献   
10.
Finding an operational parameter vector is always challenging in the application of hydrologic models, with over‐parameterization and limited information from observations leading to uncertainty about the best parameter vectors. Thus, it is beneficial to find every possible behavioural parameter vector. This paper presents a new methodology, called the patient rule induction method for parameter estimation (PRIM‐PE), to define where the behavioural parameter vectors are located in the parameter space. The PRIM‐PE was used to discover all regions of the parameter space containing an acceptable model behaviour. This algorithm consists of an initial sampling procedure to generate a parameter sample that sufficiently represents the response surface with a uniform distribution within the “good‐enough” region (i.e., performance better than a predefined threshold) and a rule induction component (PRIM), which is then used to define regions in the parameter space in which the acceptable parameter vectors are located. To investigate its ability in different situations, the methodology is evaluated using four test problems. The PRIM‐PE sampling procedure was also compared against a Markov chain Monte Carlo sampler known as the differential evolution adaptive Metropolis (DREAMZS) algorithm. Finally, a spatially distributed hydrological model calibration problem with two settings (a three‐parameter calibration problem and a 23‐parameter calibration problem) was solved using the PRIM‐PE algorithm. The results show that the PRIM‐PE method captured the good‐enough region in the parameter space successfully using 8 and 107 boxes for the three‐parameter and 23‐parameter problems, respectively. This good‐enough region can be used in a global sensitivity analysis to provide a broad range of parameter vectors that produce acceptable model performance. Moreover, for a specific objective function and model structure, the size of the boxes can be used as a measure of equifinality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号