首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地球物理   1篇
地质学   6篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
As wheat represents the main staple food and strategic crop in Egypt and worldwide and since remote sensing satellite imagery is the tool to obtain synoptic, multi-temporal, dynamic, and time-efficient information about any target on the Earth, the main objective of the current study is to use remote sensing satellite imagery to generate remotely sensed empirical preharvest wheat yield prediction models. The main input parameters of these models are spectral data either in the form of spectral reflectance data released from Satellite Pour lObservation de la Terre (SPOT) 4 satellite imagery or in the form of spectral vegetation indices. The other input factor is leaf area index (LAI) that was measured by LAI Plant Canopy Analyzer. The four spectral bands of SPOT4 imagery are green, red, near-infrared, and middle infrared; the five vegetation indices that are forms of ratios between red and near-infrared bands are normalized difference vegetation index, ratio vegetation index, soil-adjusted vegetation index, difference vegetation index, and infrared percentage vegetation index. Another vegetation index is green vegetation index that is calculated through a ratio between green band and near-infrared band. Each of the above-mentioned factors was used as an input factor against wheat yield to generate wheat yield prediction models. All generated models are site-specific limited to the area and the environment and could be applicable under similar conditions in Egypt. The study was carried out in Sakha experimental station by using the dataset from two wheat season 2007/2008 and 2009/2010. The total wheat area was 1.3 ha cultivated by Sakha 93 cultivar. Modeling and validation process were carried out for each season independently. Modeled yield was tested against reported yield through two common statistical tests; the standard error of estimate between modeled yield and reported yield, and the correlation coefficient for a direct regression analysis between modeled and reported yield with each generated model. Generally, as shown from the correlation coefficient of the generated models, green and middle infrared bands did not show good accuracy to predict wheat yield, while the other spectral bands (red and near-infrared) bands showed high accuracy and sufficiency to predict yield. This was proven through the correlation coefficient of the generated models and through the generated models with the wheat crops for the two seasons. Accordingly, the green vegetation index that is generally calculated from green and near-infrared bands showed relatively lower accuracy than the rest of the vegetation index models that are calculated from red and near-infrared bands. LAI showed high accuracy to predict yield as shown from the statistical analysis. The models are applicable after 90 days from sowing stage and applicable in similar regions with the same conditions.  相似文献   
2.
Selection of a suitable reservoir for fluid storage depends on the reservoir characteristics including permeability, porosity, depth, and reservoir volume. A prospective injection site requires certain quantitative or qualitative value for every parameter involved in a selection criterion. The Barremian?Clower Aptian Zubair Formation, at the Burgan oilfield in southern Kuwait, was selected as a potential site for a deep slurry injection project. The Zubair Formation is a major siliciclastic wedge; the target zone (second sand layer) ranges in thickness from 85.3 to 115.8?m with lateral extension measuring 35 by 20?km. The Zubair Formation parameters were evaluated, using log information, provided by Kuwait Oil Company, from three existing oil wells in the Burgan oilfield, and applying Nadeem and Dusseault (Environ Geosci 14(2):61?C71, 2007) geological assessment model for deep slurry injection. The results of the model show that the Zubair Formation is an excellent reservoir to receive injected slurried waste.  相似文献   
3.
Calcareous lumps of varying sizes and shapes are scattered on the landward part of the muddy intertidal flat along the southern coast of Bubiyan Island, northeast Kuwait. Two main lithotypes are recognized, namely, hard sandy crust fragments which are mostly formed of porous calcareous grainstone (bio-oosparite) and lithified muddy lumps that consist of calcareous wackestone (bio-micrite). They were originally eroded from the soft tidal flat sediments then lithified. Petrographic, mineralogical, and SEM/EDS examinations revealed that lithification of these calcareous lumps is attributed to cementation by biologically influenced organominerals, mainly high magnesium calcite and aragonite. The conditions responsible for the precipitation of these organominerals as well as variation in their mineralogy within each type of these calcareous lumps were discussed.  相似文献   
4.
A study of combined effects of valley-weathering and valley-shaperatio on the ground motion characteristics and associated differential ground motion (DGM) is documented in this paper. In order to properly quantify the weathering effects, a forth-order-accurate staggered-grid viscoelastic time-domain finite-difference program has been used for the simulation of SH-wave responses. Simulated results revealed that the defocusing caused by valley is frequency-independent in contrast to the ridge-focusing. A decrease of average spectral amplification (ASA) with an increase of shape-ratio of the non-weathered triangular and elliptical valleys was obtained. Overall, the amplification and de-amplification pattern was larger in case of triangular valleys as compared to the elliptical valleys. It can be concluded that the dwelling within or near the topcorners of weathered valleys may suffer more damage as compared to their surroundings. A weathered triangular valley with large shape-ratio may cause unexpected damage very near its top-corners since both the ASA and DGM are largest.  相似文献   
5.
The objective of the current study is to use satellite data to assess the mutual influence between vegetation and climate. The Ismailia Governorate was selected as a case study to investigate the impact of vegetation cover expansion on both land surface and air temperature from 1983 to 2010 and vice versa. This observation site was carefully selected as a clear example of the high rate of the reclamation and vegetation expansion process in Egypt. Land surface temperature (LST) was estimated through the Advanced Very High Resolution Radiometer (a space-borne sensor embarked on the National Oceanic and Atmospheric Administration) data while air temperature (T air) was collected from ground meteorological stations in the study area. Irrigated agriculture is the largest consumer of freshwater resources. However, consistent information on irrigation water use is still lacking. Relative humidity, wind speed, solar radiation, and T air data were inserted in the Penman–Monteith equation to calculate potential evapotranspiration (ETo), while both LST and T air were used to observe the relative water status of the study area as a result of the water deficit index (WDI). Then, both WDI and ETo were used to calculate actual evepotranspiration (ETC.). The results showed that LST decreased by about 2.3 °C while T air decreased by about 1.6 °C during the study period. The results showed also that the vegetation cover expanded from 25,529.85 ha in 1985 to 63,140.49 ha in 2009 with about 147 % increase. This decrease in LST and air temperature was according to the expansion of the cultivated land that was proved through the processing of three Landsat TM and Landsat ETM+ imageries acquired in June 19, 1985, June 7, 1998, and June 29, 2009. The vegetation water consumption was affected by the decreasing surface and air temperature. The results showed that the water deficit index decreased by about 0.35, and actual evapotranspiration increased by about 2.5 mm during the study period.  相似文献   
6.
This study examines linear spectral unmixing technique for mapping the surface soil types using field spectroscopy data as the reference spectra. The investigated area is located in North Sinai, Egypt. The study employed data from the Landsat 7 ETM+ satellite sensor with improved spatial and spectral resolution. Mixed remotely sensed image pixels may lead to inaccurate classification results in most conventional image classification algorithms. Spectral unmixing may solve this problem by resolving those into separate components. Four soil type end-members were identified with minimum noise fraction and pixel purity index analyses. The identified soil types are calcareous soils, dry sabkhas, wet sabkhas, and sand dunes. Soil end-member reference spectra were collected in the field using an ASD FieldSpec Pro spectrometer. Constrained sum-to-one and non-negativity linear spectral unmixing model was applied and the soil types map was produced. The results showed that linear spectral unmixing model can be a useful tool for mapping soil types from ETM+ images.  相似文献   
7.
In this study, bentonite (Ben), compost (Com), and biochar (Bio) were used as soil amendments to enhance sandy soil physical properties. A soil column experiment was conducted in a laboratory. Application rates were 3% (weight/weight) of Bio (T1), Ben (T2), and Com (T3). Furthermore, mixtures 1.5% and 1.5% of Bio and Ben (T4), Ben and Com (T5), and Bio and Com (T6), and a mixture 1%, 1%, and 1% of Bio, Ben, and Com (T7) in addition to control treatment were adopted. The mixtures of amendments and sandy soil were concentrated at the top 10 cm of columns. Results revealed that the cumulative evaporation was reduced by 2.3% and 5.7% as a result of using T3 and T5, respectively. However, the remaining treatments enhanced the cumulative evaporation. The application of amendments increased the capacity of the soil to maintain water by 35.4%, 24.4%, 13.3%, and 10.2%, for soils treated with T5, T3, T7, and T4, respectively. The water content at field capacity had the highest increase in the top 10 cm when treatment T3 was used. Although T3 (compost) was the most efficient for enhancing soil physical properties, this study recommends T5 and T7 to improve hydraulic properties of sandy soils. This is due to the fact that biochar and bentonite remain in the soil for a longer period and resist biodegradation while compost overcomes the negative impact of soil chemical properties as a result of biochar and bentonite additions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号