首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   465篇
  免费   45篇
  国内免费   37篇
测绘学   8篇
大气科学   22篇
地球物理   115篇
地质学   297篇
海洋学   18篇
天文学   27篇
综合类   33篇
自然地理   27篇
  2023年   9篇
  2022年   19篇
  2021年   46篇
  2020年   32篇
  2019年   25篇
  2018年   81篇
  2017年   44篇
  2016年   63篇
  2015年   37篇
  2014年   33篇
  2013年   43篇
  2012年   16篇
  2011年   20篇
  2010年   6篇
  2009年   12篇
  2008年   9篇
  2007年   4篇
  2006年   4篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   6篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1995年   3篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1979年   1篇
  1977年   4篇
  1976年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有547条查询结果,搜索用时 15 毫秒
1.
Natural Hazards - The original article was updated and corrected due to numbering errors in Figure 8’s subfigures and the placement of some of the article’s other figures. Additional...  相似文献   
2.
Performance of hemi-cylindrical and rectangular submerged breakwaters   总被引:1,自引:0,他引:1  
A parametric experimental study is conducted to compare the reflection and transmission characteristics of submerged hemi-cylindrical and rectangular rigid and water-filled flexible breakwater models. The results show that, for the rigid breakwaters, rectangular models are more effective than hemi-cylindrical ones in terms of reduction of transmitted waves. As for the flexible breakwaters, the hemi-cylindrical models may give better wave reflection than rectangular ones. However, the energy loss induced by the rectangular breakwaters is much larger and more significant to result in an overall better efficiency in terms of reduction in wave transmission. The effects of internal pressure show that the lowest pressurized flexible models considered in this work are the most effective in the reduction of the transmitted wave height. Higher wave reflection, lower wave transmission and higher energy loss are obtained consistently at the lower submergence depth ratio.  相似文献   
3.
Groundwater development has contributed significantly to food security and reduction in poverty in Pakistan. Due to rapid population growth there has been a dramatic increase in the intensity of groundwater exploitation leading to declining water tables and deteriorating groundwater quality. In such prevailing conditions, the hydrogeological appraisal of escalating groundwater exploitation has become of paramount importance. Keeping this in view, a surface water–groundwater quantity and quality model was developed to assess future groundwater trends in the Rechna Doab (RD), a sub-catchment of the Indus River Basin. Scenario analysis shows that if dry conditions persist, there will be an overall decline in groundwater levels of around 10 m for the whole of RD during the next 25 years. The lower parts of RD with limited surface water supplies will undergo the highest decline in groundwater levels (10 to 20 m), which will make groundwater pumping very expensive for farmers. There is a high risk of groundwater salinization due to vertical upconing and lateral movement of highly saline groundwater into the fresh shallow aquifers in the upper parts of RD. If groundwater pumping is allowed to increase at the current rate, there will be an overall decline in groundwater salinity for the lower and middle parts of RD because of enhanced river leakage.  相似文献   
4.
Twenty four new strains were tested for their yield, quality and Leaf Curl Virus (ClCuV) resistance. NIAB-111/S, NIAB-98 and NIAB-999 were significantly high fruit bearing varieties at 90 days completing 59.54, 48.26 and 46.00% fruiting respectively. Seed cotton yield of VH-142 was highest with 5417 kgha?1 and 52 per plant boll bearing, DNH-57 and NIAB-999 remained second and third with 5234 and 5095 kg ha?1 seed cotton yield, respectively. BH-160 and CRIS-467 were found to be second and third highest boll bearing varieties with 50.97 and 40.20 per plant average bolls respectively. Plant height in CRIS-467, MNH-642 and SLH-224 was significantly higher in comparison to other varieties.NIAB-98, CIM-499 and CIM-506 were found short stature varieties in comparison with other but out of these NIAB-98 and CIM-506 were in high yielding position and CIM-499 was found medium yielder variety. GOT% of MNH-642 remained highest having value of 45.00%. While GOT%. of NIBGE-1, CRIS-168 and CRIS-467 was at lowest position with 35.73, 35.89 and 36.62% respectively. NIAB-111, CIM-499 and BH-160 were at first position in terms of fibre fineness with micronaire values 3.98, 4.00 and 4.07 ìg/inch having fibre length 28.53, 31.38 and 30.23 mm respectively. Out of 26 varieties, 16 varieties resulted maturity index in the range of 85.03% and 90.30% with highest maturity index in case of NIBGE-1 (i.e. 90.30%) followed by NIAB-999 and MNH-642 with 89.55 and 85.5% respectively.CRIS-168, CRIS-468 and CRIS-467 were found viral susceptible.  相似文献   
5.
Simulation of quick runoff components such as surface runoff and associated soil erosion requires temporal high‐resolution rainfall intensities. However, these data are often not available because such measurements are costly and time consuming. Current rainfall disaggregation methods have shortcomings, especially in generating the distribution of storm events. The objectives of this study were to improve point rainfall disaggregation using a new magnitude category rainfall disaggregation approach. The procedure is introduced using a coupled disaggregation approach (Hyetos and cascade) for multisite rainfall disaggregation. The new procedure was tested with ten long‐term precipitation data sets of central Germany using summer and winter precipitation to determine seasonal variability. Results showed that dividing the rainfall amount into four daily rainfall magnitude categories (1–10, 11–25, 26–50, >50 mm) improves the simulation of high rainfall intensity (convective rainfall). The Hyetos model category approach (HyetosCat) with seasonal variation performs representative to observed hourly rainfall compared with without categories on each month. The mean absolute percentage accuracy of standard deviation for hourly rainfall is 89.7% in winter and 95.6% in summer. The proposed magnitude category method applied with the coupled HyetosCat–cascade approach reproduces successfully the statistical behaviour of local 10‐min rainfall intensities in terms of intermittency as well as variability. The root mean square error performance statistics for disaggregated 10‐min rainfall depth ranges from 0.20 to 2.38 mm for summer and from 0.12 to 2.82 mm for the winter season in all categories. The coupled stochastic approach preserves the statistical self‐similarity and intermittency at each magnitude category with a relatively low computational burden. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
6.
7.
Slope failure usually occurs when soil particles are unable to build a strong bond with each other and become loose because of the presence of water. Water pressure weakens the ties between the particles and they tend to slip. Therefore, this study focused on the use of horizontal drains to reduce water entry and control the ground water level as a method of slope stabilization. Several previous studies have shown that the use of horizontal drains to lower the water level in soil is one of the fastest and cheapest slope stabilization methods. The main objective of this study is to analyze the effect of horizontal drains on slope stability. Information on slope condition during the landslides which happened at Precinct 9, Putrajaya, Malaysia was used for analytical simulation. Seep/W and Slope/W analyses were carried out with GeoStudio version 2007 software. Slopes with and without horizontal drains were then compared in terms of groundwater level and factor of safety (FOS) values. Scenarios were created for seven types of soil namely: residual, clay, silt, loam, sandy loam, sandy clay loam, and silt clay loam for a case wise analysis. The effect of daily steady rainfall and realcondition rainfall was studied. These cases were studied to find the effectiveness of horizontal drains as a slope stabilization tool. The results revealed that when a drain was installed on a slope, the groundwater level dropped immediately and the safety factor of the slope increased. Sandy loam (sL) soil was identified as the best candidate for a horizontal drain. Its highly saturated hydraulic conductivity Ks facilitated groundwater drain through the horizontal drain effectively. Silt clay loam (scL) soil was identified as the least effective candidate.  相似文献   
8.
Variability in precipitation is critical for the management of water resources. In this study, the research entropy base concept was applied to investigate spatial and temporal variability of the precipitation during 1964–2013 in the Songhua River basin of Heilongjiang Province in China. Sample entropy was applied on precipitation data on a monthly, seasonally, annually, decade scale and the number of rainy days for each selected station. Intensity entropy and apportionment entropy were used to calculate the variability over individual year and decade, respectively. Subsequently, Spearman’s Rho and Mann–Kendall tests were applied to observe for trends in the precipitation time series. The statistics of sample disorder index showed that the precipitation during February (mean 1.09, max. 1.26 and min. 0.80), April (mean 1.12, max. 1.29 and min. 0.99) and July (mean 1.10, max. 1.20 and min. 0.98) contributed significantly higher than those of other months. Overall, the contribution of the winter season was considerably high with a standard deviation of 0.10. The precipitation variability on decade basis was observed to increase from decade 1964–1973 and 1994–2003 with a mean value of decadal apportionment disorder index 0.023 and 0.053, respectively. In addition, the Mann–Kendall test value (1.90) showed a significant positive trend only at the Shangzhi station.  相似文献   
9.
The geochemical characteristics of two sections—the Permian–Triassic boundary (PTB) Guryul Ravine section, Kashmir Valley, Jammu and Kashmir, India; and the Attargoo section, Spiti Valley, Himachal Pradesh, India—have been studied in the context of provenance, paleo-weathering, and plate tectonic setting. These sections represent the siliciclastic sedimentary sequence from the Tethys Himalaya. The PTB siliciclastic sedimentary sequence in these regions primarily consists of sandstones and shales with variable thickness. Present studied sandstones and shales of both sections had chemical index of alteration values between 65 and 74; such values reveal low-to-moderate degree of chemical weathering. The chemical index of weathering in studied samples ranged from 71 to 94, suggesting a minor K-metasomatism effect on these samples. Plagioclase index of alteration in studied sections ranged from 68 to 92, indicating a moderate degree of weathering of plagioclase feldspars. The provenance discriminant function diagram suggests that the detritus involved in the formation of present studied siliciclastic sedimentary rocks fall in quartzose sedimentary and felsic igneous provenances. These sediments were deposited in a passive continental margin plate tectonic setting according to their location on a Si2O versus K2O/Na2O tectonic setting diagram.  相似文献   
10.

The Uromia–Dokhtar Magmatic Arc (UDMA) is a northwest–southeast trending magmatic belt which is formed due to oblique subduction of Neotethys underneath Central Iran and dominantly comprises magmatic rocks. The Jebal-e-Barez Plutonic Complex (JBPC) is located southeast of the UDMA and composed of quartz diorite, granodiorite, granite, and alkali granite. Magmatic enclaves, ranging in composition from felsic to mafic, are abundant in the studied rocks. Based on the whole rock and mineral chemistry study, the granitoids are typically medium-high K calc-alkaline and metaluminous to peraluminous that show characteristics of I-type granitoids. The high field strength (HFS) and large ionic radius lithophile (LIL) element geochemistry suggests fractional crystallization as a major process in the evolution of the JBPC. The tectonomagmatic setting of the granitoids is compatible with the arc-related granitic suite, a pre-plate collision granitic suite, and a syncollision granitic suite. Field observations and petrographic and geochemical studies suggest that the rocks in this area are I-type granitoids and continental collision granitoids (CCG), continental arc granitoids (CAG), and island arc granitoid (IAG) subsections. The geothermobarometry based on the electron probe microanalysis of amphibole, feldspars, and biotite from selected rocks of JBPC implies that the complex formed at high-level depths (i.e., 9–12 km; upper continental crust) and at temperatures ranging from 650 to 750 °C under oxidation conditions. It seems that JBPC is located within a shear zone period, and structural setting of JBPC is extensional shear fractures which are product of transpression tectonic regime. All available data suggested that these granitoids may be derived from a magmatic arc that was formed by northeastern ward subduction of the Neotethyan oceanic crust beneath the Central Iran in Paleogene and subsequent collision between the Arabian and Iranian plates in Miocene.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号