首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地质学   8篇
  2022年   1篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2010年   1篇
  2009年   1篇
  2003年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Site investigation and evaluation of properties of soil or rock are important aspects of geotechnical design. Determination of the ground stiffness is one of the important parameters in geotechnical engineering. Since the measurement of shear modulus is very sensitive to soil disturbance, especially for sand, determination of the stiffness of soil in the field is more reliable than in laboratory tests on sampled specimens. Measurement of shear modulus is one of the most common applications of self-boring pressuremeter testing. As an in situ device, the pressuremeter provides a unique method for assessing directly the in situ shear modulus of a soil. This paper describes a laboratory study of silica sand stiffness, which varies with stress level and strain amplitude. The results show that the elastic shear modulus value is mainly dependent on the value of the mean effective stress and relative density.  相似文献   
2.
The results of geotechnical explorations, engineering geological investigation (including laboratory and in situ tests) and field observations have been used, along with borehole logging charts, to obtain the rock mass geotechnical data. Based on the data, the rock mass along the Sabzkuh water conveyance tunnel route was classified by rock mass rating (RMR), Q-system (Q), rock mass index (RMi) and geological strength index (GSI) (3 methods). A new series of correlations were established between the systems based on the data collected from the study area. These relationships were then compared with those reported in the literature, and two new relations were recommended. The classifications were utilized to calculate mechanical properties (rock mass strength and deformation modulus) of the rock mass along the tunnel according to available empirical relations, and to distinguish the upper-bound and lower-bound relations.  相似文献   
3.
4.
The Siruyeh landslide occurred at the eastern side of the Siruyeh valley, 22 km west of Semirom city, south of Esfahān on 25th March, 2005 with large dimensions (2,400 m long, 450 m wide with total area of 1 km2). The sliding mass blocked the Siruyeh River making a 35-m-high natural dam and 6-acre lake 570,000 m3 in volume that poses a potential threat for the area. The landslide occurred in soil and intensely weathered marls of the Tarbur and Kashkan Formations (upper Cretaceous–Paleocene age). The overall comparison and interpretation of the gathered evidence from satellite images, field trips, and laboratory tests show that the most important factors involved in triggering the Siruyeh landslide in order of importance are heavy precipitation and snow melt and intense concentration of faults and fractures as well as weathered and weak lithology.  相似文献   
5.
One of the most important steps in designing underground structures is the evaluation of ground conditions in terms of squeezing potential and behavior of the geological structures. Generally, constructing a tunnel in the squeezing condition is a very slow and difficult task. Therefore, recognition and evaluation of the squeezing potential is very important in selecting a suitable excavation method and support, especially in weak rocks. This research is concerned with the assessment of squeezing potential along tunnel T4 of water conveyance system from Azad dam to Ravansar plain with the length of 11,380 m, located between Kurdistan and Kermanshah provinces, west of Iran. This tunnel is in an almost NS direction and flows through the contact zone of Iran and Arabic plates. According to the engineering geological investigations, the squeezing potential has been recognized as the most important difficulty in the excavation of tunnel T4. This conclusion can be explained by the several indicators including lithology, high disintegration of rock masses, alteration of rocks on the border of Iran and Arabic plates’ contact zone, low rock mass quality, high overburden, and highly jointed rock masses in a shuffle tectonic condition. This paper deals with the engineering geological and geomechanical properties of rock masses. Then, it evaluates squeezing intensity using empirical, semi-empirical, and analytical properties methods. The analysis conducted in these work shows that the tunnel excavation would encounter squeezing problems, which is most severe in region 2 due to the effects of the major young Zagros fault.  相似文献   
6.
The focus of this study is the empirical hydromechanical behaviour of the Ostur dam site rock mass. The area surrounding the dam mostly consists of diorite and andesite, with primary fractures and hydrothermal veins. The hydromechanical behaviour of the rocks was determined using 500 water pressure tests at 5-m intervals. The hydrothermal veins and 2,739 discontinuities were studied and mapped along the dam axis. As a result, it was possible to design an optimum grout curtain for the dam axis. The empirical hydromechanical behaviour of the rock was studied to determine water flow and grout pressurised flow during the field tests that were conducted on two representative A-series grouting operation boreholes (one borehole for each abutment). The secondary permeability index (SPI), Lugeon value (LU), rock quality designation (RQD) and cement take (CT) values are presented and compared in this article. It is concluded that permeability and groutability are mostly controlled by the specifications and characteristics of the veins, especially in shallow areas and lower depths. A procedure is proposed based on a comparison of the trends in the RQD–SPI and LU–CT, and it is suggested that the areas with diverging trends require no treatment and that those with converging trends require heavy treatment. Additional complementary studies that were conducted during the construction stage have validated these results.  相似文献   
7.
Geotechnical and Geological Engineering - In the present paper, the effect of the depth of the bedrock layer on the land subsidence of the Isfahan plain was studied. The geological bedrock layer...  相似文献   
8.
This paper describes the results of the engineering geological investigations and geotechnical studies performed in the Nargesi dam site. The dam foundation located on the sedimentary rocks of Neogen period. To conduct this study, the steps including field and laboratory investigations, surface discontinuity surveying, drilled borehole data, and permeability were performed on dam foundation. Besides, the evaluation of the dam foundation was carried out by water pressure tests, which indicate the necessity of creating a grout curtain below the dam foundation. The permeability and groutability characteristics of the Nargesi dam foundation are significantly affected by geology of the site. The rock mass properties of the test section obtained from secondary permeability index (SPI) completed with the degree of jointing of the drill core acts as a useful reference for ground treatment design. Here, the performed laboratory tests were as: determination of density, moisture percent, porosity percent, water absorption, uniaxial compressive strength, Point-load strength index (Is50), p-wave velocity (Cp), s-wave velocity (Cs), deformability, and triaxial tests. The rock mass properties and classifications of the damsite is assessed using rock mass rating, the rock quality (Q), and the geological strength index classification systems. The strength and modulus elasticity of rock masses were determined through the equations proposed by different researchers. According to the findings of this work, except for some cases, there is a reasonable correlation between SPI and rock quality designation values. Based on these results, grout type and composition was suggested for the design of grout curtain.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号