首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地质学   6篇
  2019年   1篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
One of the crucial consequences of steam assisted gravity drainage (SAGD) process is abnormal reservoir uplifting under thermal steam injection, which can significantly influence the reservoir rock deformation, specifically thin bed reservoirs and causes intensive failures and fractures into the cap rock formations. A thorough understanding of the influences of rock thermo-mechanical properties on reservoir uplifting plays an important role in preventing those aforementioned failures within design and optimization process in SAGD. In addition, coupling of reservoir porous medium and flowing of specific fluid with temperature as an additional degree of freedom with initial pore pressure and in-situ stress condition, are also very challenging parts of geomechanical coupled simulation which would be clearly explained. Thus, a fully coupled thermo-poro-elastic geomechanical model with finite element codes was performed in ABAQUS to investigate the role of rock thermo-mechanical parameters on reservoir vertical uplift during steam injection. It is clearly observed that, any increase in rock thermo-mechanical properties specifically rock’s thermal properties such as specific heat, thermal expansion, and formation’s thermal conductivity, have significant influences on reservoir uplift. So by coupling the temperature as an additional degree of freedom with the coupled pore-fluid stress and diffusion finite element model of SAGD process, the more realistic simulation will be conducted; hence, the errors related to not having heat as an additional degree of freedom will be diminished. In addition, Young’s modulus and specific heat are the rock thermo-mechanical parameters which have the maximum and minimum effects on the reservoir uplift, respectively.  相似文献   
2.
Studying the mechanical characteristics of weak sedimentary rocks is a burning issue in civil and mining engineering designs and analysis since obtaining rock mechanical properties of these has always faced lots of problems and uncertainties due to the structural weaknesses. One of the main causes of these problems is the difficulty of preparing high-quality core specimens recommended by testing standards or suggested methods for uniaxial compressive strength (UCS). For resolving this issue, in this study, common methods for indirect estimation of UCS of weak rocks were initially studied, their merits and demerits were analyzed, and then, in light of their positive and negative points, a new modified device was designed with a different mechanical structure and force exertion system, which could be practically used to present a new method for indirect estimation of UCS. Thus, in this study, we initially had a general view of the new dynamic needle penetrometer and its modified parts and their capabilities. After introduction, as the first phase of the practical studies on this, dynamic needle penetration resistance (DNPR) was measured, as the dynamic needle penetrometer test result, from 65 specimens collected from three different projects. Then, the relationships between DNPR and UCS of the rock specimens and the regressions of correlations were statistically analyzed. Finally, a linear equation with considerable accuracy resulted from analysis, and using this led to solving the main problem of this research by proposing a developed method for indirect estimation of uniaxial compressive strength of weak rocks.  相似文献   
3.
Natural Hazards - Ground vibrations induced by the blasting of explosives can cause damage to the slope stability of mines. The important indicators of rock mass such as the geological...  相似文献   
4.
Determining in-situ soil or rock geotechnical properties is a difficult task for a design engineer. Back analysis is a helpful technique for evaluating soil property by considering and measuring the convergence of an underground opening. Back analysis was performed by matching numerical modeling results with the measured tunnel convergence. The main purpose of this study was to determine optimum rock mass properties using back analysis in order to suggest the best and most economical support system. Accordingly, the difference between measured and calculated convergence values was minimized by using an error function (objective function). In this paper, through the parameters obtained from back analysis, a support system based on a set consisting of shotcrete, wire mesh, and lattice girder was suggested for the Babolak water conveyance tunnel in Mazandaran, Iran. Therefore, the suggested design was based on decreasing shotcrete thickness from 25 to 20?cm and eliminating of rock bolts.  相似文献   
5.
Preparing high-quality samples, which can fulfill testing standards, from weak and block-in-matrix conglomerate for laboratory tests, is a big challenge in engineering projects. Hence, using indirect methods seems to be indispensable for determination uniaxial compressive strength (UCS). The main objective of this study is to estimate the relation between sonic velocity (Vp), Schmidt hammer rebound number (SCH) and UCS. For this reason, some samples of weak conglomeratic rock were collected from two different sites of dam in Iran (Bakhtiari and Hezardareh Formations). In order to evaluate the correlation, the measured and predicted values utilizing simple and multivariate regression techniques were examined. To control the performance of the proposed equation, root mean square error (RMSE) and value accounts for (VAF%) were determined. The VAF% and RMSE indices were computed as 94.34 and 1.56 for the relation between Vp and UCS from simple regression model. These were 94.39 and 1.6 between SCH and UCS, while these were 97.24 and 1.34 for uniaxial compressive strengths obtained from multivariate regression model.  相似文献   
6.
Nowadays, self-compacting concrete is used in reinforced concrete structure with heavy bars. This type of concrete is widely accepted throughout the world; therefore, it can be used as an attractive solution for inner lining of tunnels. Regarding the effect of fibers in improving the concrete properties the effect of using polypropylene fiber on the behavior of arch specimens are investigated in laboratory. Therefore, specimens with dimensions of 1 m diameter, 0.5 m width, and 10 cm thickness with various reinforcing bars in arch forms were prepared and their flexural strength was investigated. The results show high ability of self-compacting concrete for the inner coverage of tunnels and its increasing strength is due to use of fibers. In addition, the results indicate that by adding fibers in the amount of 0.1 % of cement weight and reinforcing bars of size number 10, the required flexural strength would be obtained.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号