首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   1篇
海洋学   1篇
  2019年   1篇
  2011年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
An approximate static solution is derived for the elastic settlement and load-transfer mechanism in axially loaded end-bearing piles in inhomogeneous soil obeying a power law variation in shear modulus with depth. The proposed generalised formulation can handle different types of soil inhomogeneity by employing pertinent eigenexpansions of the dependent variables over the vertical coordinate, in the form of static soil “modes”, analogous to those used in structural dynamics. Contrary to available models for homogeneous soil, the associated Fourier coefficients are coupled, obtained as solutions to a set of simultaneous algebraic equations of equal rank to the number of modes considered. Closed-form solutions are derived for the (1) pile head stiffness; (2) pile settlement, axial stress, and side friction profiles leading to actual, depth-dependent Winkler moduli, (3) displacement and stress fields in the soil; and (4) average, depth-independent Winkler moduli to match pile head settlement. The predictive power of the model is verified via comparisons against finite element analyses. The applicability to inhomogeneous soil of an existing regression formula for the average Winkler modulus is explored.  相似文献   
2.
In this work, the large-wave simulation (LWS) method is adapted for application in spilling wave breaking over a constant slope beach. According to LWS, large scales of velocities, pressure and free-surface elevation are numerically resolved, while the corresponding unresolved scale effects are taken into consideration by a subgrid scale (SGS) model for wave and eddy stresses. The model may be not fully applicable in very shallow water, close to the shoreline, where the unresolved, turbulent, free-surface oscillation is of the same order with the water depth. Time integration of the Euler equations is achieved by a two-stage fractional scheme, combined with a hybrid scheme for spatial discretization, consisting of finite difference and pseudospectral approximation methods. Model parameters are calibrated by comparison to available experimental data of free-surface elevation and velocities in the surf zone for cross-shore incoming waves. The action of the wave SGS stresses in the outer coastal and surf zones initiates breaking and generates appropriate vorticity, in the form of an eddy structure (surface roller), at the breaking wavefront. At incipient breaking, both advection and gravity contribute to the vorticity flux at the free surface, while only after the full development of the surface roller, the effect of advection becomes stronger. The SGS model is also utilized to simulate propagation, refraction and breaking of oblique incoming waves. The gradual breaking and dissipation of wave crestlines and the surface roller structure along the breaking wavefront are automatically captured without any empirical input, such as data for the roller shape or the wave propagation angle at breaking.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号