首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   1篇
地质学   1篇
  2021年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
A model for the stress‐dependent elastic wave velocity response of fractured rock mass is proposed based on experimental evidence of stress‐dependent fracture normal and shear stiffness. Previously proposed models and previous experimental studies on stress‐dependent fracture stiffness have been reviewed to provide a basis for the new model. Most of the existing stress‐dependent elastic wave velocity models are empirical, with model parameters that do not have clear physical meanings. To propose the new model, the rock mass is assumed to have randomly oriented microscopic fractures. In addition, the characteristic length of microfractures is assumed to be sufficiently short compared to the rock mass dimensions. The macroscopic stress‐dependent elastic wave velocity response is assumed to be attributed to the stress dependency of fracture stiffness. The stress‐dependent fracture normal stiffness is defined as a generalized power law function of effective normal stress, which is a modification of the Goodman's model. On the other hand, the stress dependency of fracture shear stiffness is modeled as a linear function of normal stress based on experimental data. Ultrasonic wave velocity responses of a dry core sample of Berea sandstone were tested at effective stresses ranging from 2 to 55 MPa. Visual observation of thin sections obtained from the Berea sandstone confirms that the assumptions made for microstructure of rock mass model are appropriate. It is shown that the model can describe the stress‐dependent ultrasonic wave velocity responses of dry Berea sandstone with a set of reasonable material parameter values. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
2.
The newly proposed mega sub-controlled structure system(MSCSS) and related studies have drawn the attention of civil engineers for practice in improving the performance and enhancing the structural effectiveness of mega frame structures. However, there is still a need for improvement to its basic structural arrangement. In this project, an advanced, reasonable arrangement of mega sub-controlled structure models, composed of three mega stories with different numbers and arrangements of substructures, are designed to investigate the control performance of the models and obtain the optimal model configuration(model with minimum acceleration and displacement responses) under strong earthquake excitation. In addition, the dynamic parameters that affect the performance effectiveness of the optimal model of MSCSS are studied and discussed. The area of the relative stiffness ratio RD, with different mass ratio MR, within which the acceleration and displacement of the optimal model of MSCSS reaches its optimum(minimum) value is considered as an optimum region. It serves as a useful tool in practical engineering design. The study demonstrates that the proposed MSCSS configuration can efficiently control the displacement and acceleration of high rise buildings. In addition, some analytical guidelines are provided for selecting the control parameters of the structure.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号