首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
地球物理   1篇
地质学   8篇
  2020年   1篇
  2013年   2篇
  2009年   1篇
  2005年   1篇
  1999年   2篇
  1997年   1篇
  1990年   1篇
排序方式: 共有9条查询结果,搜索用时 156 毫秒
1
1.
Calcic skarn deposits related to Upper Cretaceous – Paleocene banatitic intrusions are widely developed in the Banat Mountains (southwestern Romanian Carpathians). There is a spatial distribution of banatitic igneous rocks and associated ore deposits in parallel zones, due to subduction beneath the southwest Carpathians. As a result three distinct petro-metallogenetic units developed, i.e. marginal unit: Moldova Nouă– Sasca; median unit: Ciclova – Oravita; and the inner unit: Dognecea – Ocna de Fier. The magmatism changed inland from monzonite and diorite → granodiorite occurrences to granodiorite → granite plutons. The related mineralization shifted simultaneously from Cu (Mo) to Cu-Mo (W) and eventually Fe(Cu)/Pb-Zn. The distribution of both magmatism and related ore deposits in parallel petro-metallogenetic zones is considered similar to that in the Andes. In particular, calcic skarns and related ore deposits that occur in these units show a transversal zonal variation represented by compositional features of pyroxene and granat, sequence of mineralization and metallogenetic environment. Such zonal characteristics represent an additional but nonetheless significant indicator for an Andean-type subduction-related setting. Received: 3 June 1996 / Accepted: 10 January 1997  相似文献   
2.
Kefdag and Soridag chromite pods occur in upper mantle residual peridotites, which consist of harzburgite and dunites. The peridotites represent the residual of multistage, depleted upper-mantle peridotites. The chromitite bodies were formed during the uprising of chromium-rich picritic melts, through the residual upper mantle diapir, along the magma conduits. Chromitite grains were deposited in the caves of the magma conduits under the control of the convection currents.  相似文献   
3.
The ability to deduce exhumation mechanisms from thermochronological data is hampered by the fact that assumptions on the thermal state of the lithosphere have to be made. Additional argumentation is generally required to discriminate between erosion-controlled and tectonically induced exhumation. This problem can be overcome by studying the spatial distribution of zircon and apatite (U-Th)/He and fission track data. In this work the variation of four different low temperature isotopic systems generating age trends along a sampling line is used to infer mechanisms of Quaternary exhumation in the Central High Himalayan Metamorphic Belt. Observed zircon age trends with southwards increasing cooling ages (from 0.5 to 1.7 Ma) are attributed to tectonically induced exhumation. The uniform apatite cooling ages clustered c. 0.5 Ma are attributed to erosion.  相似文献   
4.
Abstract

Field studies on the Neogene successions in south of ?zmir reveal that subsequent Neogene continental basins were developed in the region. Initially a vast lake basin was formed during the early-Middle Miocene period. The lacustrine sediments underwent an approximately N-S shortening deformation to the end of Middle Miocene. A small portion of the basin fill was later trapped within the N-S-trending, fault-bounded graben basin, the Çubukluda? graben, opened during the Late Miocene. Oblique-slip normal faults with minor sinistral displacement are formed possibly under N–S extensional regime, and controlled the sediment deposition. Following this the region suffered a phase of denudation which produced a regionwide erosional surface suggesting that the extension interrupted to the end of Late Miocene–Early Pliocene period. After this event the E–W-trending major grabens and horsts of western Anatolia began to form. The graben bounding faults cut across the Upper Miocene–Pliocene lacustrine sediments and fragmented the erosional surface. The Çubukluda? graben began to work as a cross garden between the E–W grabens, since that period. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   
5.
The granodiorite intrusion at Ocna de Fier-Dognecea in the western South Carpathians, Romania, triggered the formation of a classic Fe-(Pb-Zn) skarn deposit. The intrusive is related to the larger composite Bocşa Laccolith five kilometres north that is part of the regional Banatite Suite. Previous work indicated a K/Ar age of 65–57 Ma and postulated an Andean-type subduction related tectonic setting for the intrusions. We report ion probe U/Pb zircon ages of 79.6 ± 2.5 Ma for the Bocşa Laccolith and 75.5 ± 1.6 Ma for the Ocna de Fier Pluton, which date their emplacement. Fission track dating on titanite gives slightly younger ages: 78 ± 4 Ma for Bocşa and 73 ± 4 Ma for Ocna de Fier. Together with zircon and apatite data from the same samples, average cooling rates of 52 °C/Ma and 83 °C/Ma are calculated for the Bocşa and Ocna de Fier intrusives respectively. A post-collision tectonic setting is proposed on the basis of field evidence, the timing of intrusions in the context of regional tectonic evolution, and trace element geochemistry. Received: 4 August 1998 / Accepted: 20 April 1999  相似文献   
6.
In this study, it was performed a comparison of the performance and emissions of two methyl ester fuels: one obtained from animal fat and the other from crude canola oil, in a compression-ignition engine against diesel fuel. The experimental results compared with diesel fuel showed that significant reductions could be obtained by biodiesel derived from animal fat in carbon monoxide and oxides of nitrogen emissions. Carbon dioxide emissions showed a trend of decreasing with the biodiesel fuels. An increase in brake specific fuel consumption was observed for different biodiesel fuels when compared with diesel fuel. It was concluded that animal tallow methyl ester performed better than canola oil methyl ester, whereas slightly higher brake torque is observed with canola oil methyl ester.  相似文献   
7.
8.
P–T conditions during skarn formation in the 75.5 Ma old Ocna de Fier-Dognecea (SW Romania) ore district are assessed in this work using a combination of petrogenetic grids, Berman's TWEEQU programme, and several independent geothermobarometers. These were applied both to hornfelses surrounding the skarn and to the granodiorite which caused the skarn and contact metamorphism. The results are consistent and point to a peak metamorphic temperature of 700 ± 50 °C, decreasing away from the contact, and to a pressure of 2.8 ± 1 kbar, equivalent to ∼10 km depth in the region. These results quantify the qualitative idea that skarn mineralisation normally forms in a high T, low P contact metamorphic environment. Received: 13 February 1998 / Accepted: 8 April 1999  相似文献   
9.
Natural Hazards - Located in the Mediterranean basin, one of the world’s leading places in terms of forest fires, Turkey is one of the countries where forest fires are experienced very often...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号