首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
地球物理   2篇
  2019年   1篇
  1979年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
A MS6.0 earthquake with shallow focal depth of 16km struck Changning County, Yibin City, Sichuan Province at 22:55: 43(Beijing Time)on 17 June 2019. Although the magnitude of the earthquake is moderate, it caused heavy casualties and property losses to Changning County and its surrounding areas. In the following week, a series of aftershocks with MS≥4.0 occurred in the epicentral area successively. In order to better understand and analyze the seismotectonic structure and generation mechanism of these earthquakes, in this paper, absolute earthquake location by HYPOINVERSE 2000 method is conducted to relocate the main shock of MS6.0 in Changning using the seismic phase observation data provided by Sichuan Earthquake Administration, and focal mechanism solutions for Changning MS6.0 main shock and MS≥4.0 aftershocks are inferred using the gCAP method with the local and regional broadband station waveforms recorded by the regional seismic networks of Sichuan Province, Yunnan Province, Chongqing Municipality, and Guizhou Province. The absolute relocation results show that the epicenter of the main shock is located at 28.35°N, 104.88°E, and it occurred at an unusual shallow depth about only 6.98km, which could be one of the most significant reasons for the heavier damage in the Changning and adjoining areas. The focal plane solution of the Changning MS6.0 earthquake indicates that the main shock occurred at a thrust fault with a left-lateral strike-slip component. The full moment tensor solution provided by gCAP shows that it contains a certain percentage of non-double couple components. After the occurrence of the main shock, a series of medium and strong aftershocks with MS≥4.0 occurred continuously along the northwestern direction, the fault plane solutions for those aftershocks show mostly strike-slip and thrust fault-type. It is found that the mode of focal mechanism has an obvious characteristic of segmentation in space, which reflects the complexity of the dislocation process of the seismogenic fault. It also shows that the Changning earthquake sequences occurred in the shallow part of the upper crust. Combining with the results from the seismic sounding profile in Changning anticline, which is the main structure in the focal area, this study finds that the existence of several steep secondary faults in the core of Changning anticline is an important reason for the diversity of focal mechanism of aftershock sequences. The characteristics of regional stress field is estimated using the STRESSINVERSE method by the information of focal mechanism solutions from our study, and the results show that the Changning area is subject to a NEE oriented maximum principal stress field with a very shallow dipping and near-vertical minimum principal stress, which is not associated with the results derived from other stress indicators. Compared with the direction of the maximum principal compressive stress axis in the whole region, the direction of the stress field in the focal area rotates from the NWW direction to the NEE direction. The Changning MS6.0 earthquake locates in the area with complex geological structure, where there are a large number of small staggered fault zones with unstable geological structure. Combining with the direction of aftershocks distribution in Changning area, we infer that the Changning MS6.0 earthquake is generated by rupturing of the pre-existing fault in the Changning anticline under the action of the overall large stress field, and the seismogenic fault is a high dip-angle thrust fault with left-lateral strike-slip component, trending NW.  相似文献   
2.
A magnitude MW7.0 earthquake struck north of Anchorage, Alaska, USA on 1 December 2018. This earthquake occurred in the Alaska-Aleutian subduction zone, on a fault within the subducting Pacific slab rather than on the shallower boundary between the Pacific and North American plates. In order to better understand the earthquake source characteristics and slip distribution of source rupture process as well as to explore the effect of tectonic environment on dynamic triggering of earthquake, the faulting geometry, slip distribution, seismic moment, source time function are estimated from broadband waveforms downloaded from IRIS Data Management Center. We use the regional broadband waveforms to infer the source parameters with ISOLA package and the teleseismic body wave recorded by stations of the Global Seismic Network is employed to conduct slip distribution inversion with iterative deconvolution method. The focal mechanism solution indicates that the Alaska earthquake occurred as the result of tensile-type normal faulting, the estimated centroid depth from waveform inversion shows that the earthquake occurred at the depth of 56.5km, and the centroid location is 10km far away in northeast direction relative to the location of initial epicenter. We use the aftershock distribution to constrain the fault-plane strike of a normal fault to set up the finite fault model, the finite fault inversion shows that the earthquake slip distribution is concentrated mainly on a rectangular area with 30km×20km, and the maximum slip is up to 3.6m. In addition, the slip distribution shows an asymmetrical distribution and the range of possible rupture direction, the direction of rupture extends to the northeast direction, which is same as that of aftershock distribution for a period of ten days after the mainshock. It is interesting to note that a seismic gap appears in the southwest of the seismogenic fault, we initially determined that the earthquake was a typical normal fault-type earthquake that occurred in the back-arc extensional environment of the subduction collision zone between the Pacific plate and the North American plate, this earthquake was not related to tectonic movement of faults near the Earth's surface. Due to the influence of high temperature and pressure during the subduction of the Pacific plate toward to the north, the subduction angle of the Pacific plate becomes steep, causing consequently the backward bending deformation, thus forming to a tensile environment at the trailing edge of the collision zone and generating the MW7.0 earthquake in Alaska.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号