首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   2篇
大气科学   7篇
地球物理   12篇
地质学   5篇
天文学   1篇
自然地理   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2004年   2篇
  1998年   2篇
  1996年   2篇
  1992年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
1.
Geothermobarometry using continuous equilibria in pelitic rocks of the central and northeastern Wadi Kid areas, Sinai, yields pressure estimates of 320 MPa (3.2 kbar) and temperature estimates of 565° C and >620° C for staurolite-andalusite zone assemblages and anatectic rocks, respectively. This corresponds to geothermal gradients of 47° C/km and 50° C/km. TheseP-T conditions are shown to be compatible with burial under a volcanic cover. The principal heat source for high-grade metamorphism and anatexis is thought to be rising magmatic diapirs. Uplift was relatively slow and the final stages of heating and early stages of cooling probably occurred isobarically. The data imply a high heat flow regime for the Pan-African event in Sinai.  相似文献   
2.
The major advantage of the oxygen in phosphate isotope paleothermometry is that it is a system which records temperatures with great sensitivity while bone (and teeth) building organisms are alive, and the record is nearly perfectly preserved after death. Fish from seven water bodies of different temperatures (3–23°C) and different δ18O (values ?16 to +3) of the water were analysed. The δ18O values of the analysed PO4 vary from 6 to 25. The system passed the following tests: (a) the temperatures deduced from isotopic analyses of the sequence of fish from Lake Baikal are in good agreement with the temperatures measured in the thermally stratified lake; (b) the isotopic composition of fish bone phosphate is not influenced by the isotopic composition of the phosphate which is fed to the fish, but only by temperature and water composition.Isotopic analysis of fossil fish in combination with analysis of mammal bones should be a useful tool in deciphering continental paleoclimates.  相似文献   
3.
The analysis of micro-inclusions in fibrous diamonds from the Diavik mine, Canada revealed the presence of high density fluids (HDFs) that span a continuous compositional range between carbonatitic and saline end-members. The carbonatitic end-member is rich in Na, Ca, Mg, Fe, Ba and carbonate; the saline one is rich in K, Cl and water. In molar proportions, the composition of the saline end-member is: K38Na7.7Ca1.8Mg1.6Fe1.5Ba1.9SiO3.1Cl46(CO3)5.5(H2O)56 and that of the carbonatitic end member is: K15Na21Ca6.7Mg8.1Fe6.2Ba5.7Si4.8Ti1.4Al1.9O17Cl29(CO3)29(H2O)29. The micro-inclusions in one diamond span a narrow range between a silicic end-member (rich in Si, K and water) and a carbonatitic one (rich in Mg, Ca, Fe and carbonate). Its average composition is: K26Na5.5Ca13.8Mg8.3Fe9.6Ba0.9P2.5Si25Ti1.6Al3.8Cl2.5O81(CO3)29(H2O)78. Thus, the Diavik diamonds span most of the known compositional range for fluids trapped in diamonds. Based on these data and previous analyses of fluids trapped in diamonds, we discuss possible models for the evolution of diamond-forming fluids. The most plausible model is where carbonatitic-HDFs are parental to all the other compositions. They evolve by fractionation of divalentions- and alkali-carbonates and by immiscible separation into saline- and silicic-HDFs. Each phase continues to evolve separately, crystallizing carbonates, diamond, and accessory silicates, phosphates, halides and more of the immiscible phase. Other processes, like the mixing of evolved fluids with fresh parental carbonatitic fluids, or metasomatic interactions with the wallrock also play a role in the evolution of the HDFs. We also propose that the parental carbonatitic-HDF evolves through fractional crystallization of an alkali-rich, low degree melt that is similar to the high pressure parental melts of kimberlites or lamproites.  相似文献   
4.
5.
Summary The design of adaptive observations strategies must account for the particular properties of the data assimilation method. A new adjoint sensitivity approach to the targeted observations problem is proposed in the context of four-dimensional variational data assimilation (4D-Var). The method is based on a periodic update of the adjoint sensitivity field that takes into account the interaction between time distributed adaptive and routine observations. Information provided by all previously located observations is used to identify best locations for new targeted observations. Adaptive observations at distinct instants in time are selected in a sequential manner such that the method is only suboptimal. The selection algorithm proceeds backward in time and requires only one additional adjoint model integration in the assimilation window. Therefore, the method is very efficient and is suitable for practical applications. A comparative performance analysis is presented using the traditional adjoint sensitivity method as well as the total energy singular vectors technique as alternative adaptive strategies. Numerical experiments are performed in the twin experiments framework using a two-dimensional global shallow water model in spherical coordinates and an explicit Turkel-Zwas discretization scheme. Data from a NASA 500mb analysis valid for 00Z 16 Mar 2001 6h obtained with the GEOS-3 model was used to specify the geopotential height at the initial time and the initial velocities were obtained from a geostrophic balance. Numerical results show that the new adaptive observations approach is a promising method for targeted observations and its implementation is feasible for large scale atmospheric models.  相似文献   
6.
We examine the physics of growth of water bubbles in highly viscous melts. During the initial stages, diffusive mass transfer of water into the bubble keeps the internal pressure in the bubbles close to the initial pressure at nucleation. Growth is controlled by melt viscosity and supersaturation pressure and radial growth under constant pressure is approximately exponential. At later stages, internal pressure falls, radial growth decelerates and follows the square-root of time. At this stage it is controlled by diffusion. The time of transition between the two stages is controlled by the decompression, melt viscosity and the Peclet number of the system. The model closely fit experimental data of bubble growth in viscous melts with low water content. Close fit is also obtained for new experiments at high supersaturation, high Peclet numbers, and high, variable viscosity. Near surface, degassed, silicic melts are viscous enough, so that viscosity-controlled growth may last for very long times. Using the model, we demonstrate that bubbles which nucleate shortly before fragmentation cannot grow fast enough to be important during fragmentation. We suggest that tiny bubbles observed in melt pockets between large bubbles in pumice represent a second nucleation event shortly before or after fragmentation. The presence of such bubbles is an indicator of the conditions at fragmentation. The water content of lavas extruded at lava domes is a key factor in their evolution. Melts of low water content (<0.2 wt%) are too viscid and bubbles nucleated in them will not grow to an appreciable size. Bubbles may grow in melts with 0.4 wt% water. The internal pressure in such bubbles may be preserved for days and the energy stored in the bubbles may be important during the disintegration of dome rocks and the formation of pyroclastic flows.  相似文献   
7.
The impact of large twentieth century floods on the riparian vegetation and channel morphology of the relatively wide anabranching and braided Nahal Arava, southern Israel, was documented as part of developing tools to (a) identify recent large floods, (b) determine these flood's respective magnitudes in alluvial ungauged streams, and (c) determine long-term upper bounds to flood stages and magnitudes. Along most of its course Nahal Paran, a major tributary that impacts the morphology, floods and sediments of Nahal Arava at the study reach, is a coarse-gravel, braided ephemeral stream. Downstream of the Arava–Paran confluence, aeolian and fluvial sand delivered from eastern Arava valley alters the channel morphology. The sand has accreted up to 2.5 m above the distinct current channels, facilitating the recording of large floods. This sand enhances the establishment of denser riparian vegetation (mainly Tamarix nilotica and Haloxylon persicum) that interacts with floods and affects stream morphology. A temporal association was found between specific floods recorded upstream and tree-ring ages of re-growth of flood-damaged tamarix trees (‘Sigafoos trees’) in the past 30 years. This association can be utilized for developing a twentieth century flood chronology in hyperarid ungauged basins in the region. The minimum magnitude of the largest flood that covered the entire channel width, estimated from flood deposits, is approximately 1700–1800 m3s− 1. This is a larger magnitude than the largest gauged flood of 1150 m3s− 1 that occurred in 1970 about 30 km upstream in Nahal Paran. Our estimation agrees with flood magnitude estimated from the regional envelope curve of the largest floods. Based on Holocene alluvial stratigraphy and OSL dating in the study reach we also conclude that flood stages did not reach the late Holocene ( 2.2 ka) surface and therefore we estimate a non-exceedance upper bound of  2000 m3s− 1 flood magnitudes for Nahal Arava during that interval. This study indicates that in unfavorable areas the combination of hydrology, fluvial morphology and botanic evidence can increase our understanding of ungauged basins and give information crucial for hydrology planning.  相似文献   
8.
We present a visco-elastic bubble growth model, accounting for viscous and elastic deformations and for volatile mass transfer between bubbles and melt. We define the borders between previous bubble growth models accounting for incompressible viscous melt, and our new model accounting also for elastic deformation; this is done by a set of end-member analytical solutions and numerical simulations. Elastic deformation is most prominent for magma of small vesicularity, where the growth regime depends on the shear modulus. For high shear modulus, bubble growth is slow and follows an exponential law in a viscous growth regime, while for low shear modulus bubbles quickly follow a square-root diffusive solution. Our model provides all the elastic components (stresses, strains and strain rates) required for defining criteria for failure and magma fragmentation. We suggest two failure criteria, a stress related one based on the internal friction and the Mohr-Coulomb failure theory, and a strain related one based on fibre elongation experiments. We argue that both criteria are equivalent if we consider their shear modulus dependency and its effect on magma rheology. Last, we apply our model to the process of bubble nucleation. In the incompressible case, following nucleation, growth is slow and leads to long incubation times during which bubbles may be dissolved back into the melt. The elastic response in magmas with low shear modulus results in a short incubation time, increasing the probability of survival. The above effects emphasize the significance of visco-elasticity for the dynamic processes occurring in magmas during volcanic activity.  相似文献   
9.
Bubble growth in rhyolitic melts: experimental and numerical investigation   总被引:2,自引:0,他引:2  
 Bubble growth controlled by mass transfer of water from hydrated rhyolitic melts at high pressures and temperatures was studied experimentally and simulated numerically. Rhyolitic melts were hydrated at 150 MPa, 780–850  °C to uniform water content of 5.5–5.3 wt%. The pressure was then dropped and held constant at 15–145 MPa. Upon the drop bubbles nucleated and were allowed to grow for various periods of time before final, rapid quenching of the samples. The size and number density of bubbles in the quenched glasses were recorded. Where number densities were low and run duration short, bubble sizes were in accord with the growth model of Scriven (1959) for solitary bubbles. However, most results did not fit this simple model because of interaction between neighboring bubbles. Hence, the growth model of Proussevitch et al. (1993), which accounts for finite separation between bubbles, was further developed and used to simulate bubble growth. The good agreement between experimental data, numerical simulation, and analytical solutions enables accurate and reliable examination of bubble growth from a limited volume of supersaturated melt. At modest supersaturations bubble growth in hydrated silicic melts (3–6 wt% water, viscosity 104–106 Pa·s) is diffusion controlled. Water diffusion is fast enough to maintain steady-state concentration gradient in the melt. Viscous resistance is important only at the very early stage of growth (t<1 s). Under the above conditions growth is nearly parabolic, R2=2Dtρm(C0–Cf)/ρg until the bubble approaches its final size. In melts with low water content, viscosity is higher and maintains pressure gradients in the melt. Growth may be delayed for longer times, comparable to time scales of melt ascent during eruptions. At high levels of supersaturation, advection of hydrated melt towards the growing bubble becomes significant. Our results indicate that equilibrium degassing is a good approximation for modeling vesiculation in melts with high water concentrations (C0>3 wt%) in the region above the nucleation level. When the melt accelerates and water content decreases, equilibrium can no longer be maintained between bubbles and melt. Supersaturation develops in melt pockets away from bubbles and new bubbles may nucleate. Further acceleration and increase in viscosity cause buildup of internal pressure in the bubbles and may eventually lead to fragmentation of the melt. Received: 19 June 1995 / Accepted: 27 December 1995  相似文献   
10.
The Dead Sea has been continuously dropping 0·4–1·0 m yr?1 since the middle of the 20th century and thus provides a unique field laboratory for studying in real time the response of drainage systems to a non‐tectonic base‐level fall. The aim of this work is to study the short‐term ongoing erosive response to a rapid base‐level drop in a small, steep‐fronted, erodible fan‐delta setting. The work explores the controls of the steep Qedem fan‐delta, guided by its clinoform structure, on its incision. Longitudinal profiles of the fan‐delta and of its entrenched channel were measured in the field. Sedimentary facies changes – fluviatile, shallow lacustrine and beach – were followed along exposures. The existence of large boulders provided an opportunity to examine the uncertain role of armouring and boulder flux on incision. The field study was combined with digital elevation models (DEMs) that were extracted from pairs of overlapping aerial photos. Maps of erosion and deposition were prepared using a change detection algorithm. The longitudinal profile of the entrenched channel was found to be steep and linear. The outlet temporarily ‘hangs’ elevated and ungraded above the retreating lake level, indicating years without incision flow events, which cause lags in response to the rapid lake level drop. In spite of the large boulders, the small drainage basin and precipitation volume over the basin of the Qedem, the recorded vertical incision rates in the unconsolidated sediments are as high as 0·8 m yr?1, i.e. similar to those of the largest wadis draining to the Dead Sea. The steep front of the fan‐delta is suggested to be a main factor controlling the efficient incision. A unique transport mechanism of rolling boulders, following undercutting, contributed to the entrenchment efficiency. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号