首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
地球物理   13篇
地质学   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
  1984年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Geomorphology interacts with surface‐ and ground‐water hydrology across multiple spatial scales. Nonetheless, hydrologic and hydrogeologic models are most commonly implemented at a single spatial scale. Using an existing hydrogeologic computer model, we implemented a simple hierarchical approach to modeling surface‐ and ground‐water hydrology in a complex geomorphic setting. We parameterized the model to simulate ground‐ and surface‐water ?ow patterns through a hierarchical, three‐dimensional, quantitative representation of an anabranched montane alluvial ?ood plain (the Nyack Flood Plain, Middle Fork Flathead River, Montana, USA). Comparison of model results to ?eld data showed that the model provided reasonable representations of spatial patterns of aquifer recharge and discharge, temporal patterns of ?ood‐water storage on the ?ood plain, and rates of ground‐water movement from the main river channel into a large lateral spring channel on the ?ood plain, and water table elevation in the alluvial aquifer. These results suggest that a hierarchical approach to modeling ground‐ and surface‐water hydrology can reproduce realistic patterns of surface‐ and ground‐water ?ux on alluvial ?ood plains, and therefore should provide an excellent ‘quantitative laboratory’ for studying complex interactions between geomorphology and hydrology at and across multiple spatial scales. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
2.
3.
4.
5.
Results of Seepage Meter and Mini-Piezometer Study, Lake Mead, Nevada   总被引:2,自引:1,他引:2  
The seepage meter and the mini-piezometer were utilized in an attempt to evaluate ground-water reservoir interactions over a 12-month period at Echo Bay in Lake Mead. In conjunction with these techniques three standard piezometers, refraction seismic data, and water chemistry data were utilized to interpret seepage device results. During a four-month period, from December 1979 to March 1980, an 8 ft (2.5 m) rise in reservoir stage, the reservoir contributed water to Echo Wash bank storage at rates of up to 0.29 gpd/ft2 (12 lpd/m2). Ground-water discharge occurred for the remainder of the project, during a stage decline from April 1980 to May 1980, a rise in June 1980, and leveling off and slight decline for the remainder of the year, July 1980 to December 1980. The maximum seepage meter ground-water discharge rate of 3.0 gpd/ft2 (122 lpd/m2) was recorded in December 1980. Seepage meter water chemistry data for June were similar to Lake Mead water chemistry and were interpreted to be previously recharged Lake Mead water. September water chemistry data showed two possible components of ground-water discharge, a high SpC calcium sulfate Echo Wash ground water and a lower SpC Lake Mead recharged bank storage water. December ground-water chemistry data showed discharge to be a high SpC calcium sulfate water similar to Echo Wash ground-water quality which was apparently unaffected by Lake Mead inflow. Mini-piezometer data were collected at each seepage meter site. However, these data usually did not provide correlative results with seepage meter data probably because of suspended sediment in the piezometer water column and plugging of the perforated tip. Seepage meters were successfully utilized to characterize reservoir ground-water interaction in Echo Bay.  相似文献   
6.
Based on our experience in the project REAKT, we present a methodological framework to evaluate the potential benefits and costs of using earthquake early warning (EEW) and operational earthquake forecasting (OEF) for real-time mitigation of seismic risk at nuclear facilities. We focus on evaluating the reliability, significance and usefulness of the aforementioned real-time risk-mitigation tools and on the communication of real-time earthquake information to end-users. We find that EEW and OEF have significant potential for the reduction of seismic risk at nuclear plants, although much scientific research and testing is still necessary to optimise their operation for these sensitive and highly-regulated facilities. While our test bed was Switzerland, the methodology presented here is of general interest to the community of EEW researchers and end-users and its scope is significantly beyond its specific application within REAKT.  相似文献   
7.
8.
9.
10.
Ecohydrologic Process Modeling of Mountain Block Groundwater Recharge   总被引:1,自引:0,他引:1  
Regional mountain block recharge (MBR) is a key component of alluvial basin aquifer systems typical of the western United States. Yet neither water scientists nor resource managers have a commonly available and reasonably invoked quantitative method to constrain MBR rates. Recent advances in landscape-scale ecohydrologic process modeling offer the possibility that meteorological data and land surface physical and vegetative conditions can be used to generate estimates of MBR. A water balance was generated for a temperate 24,600-ha mountain watershed, elevation 1565 to 3207 m, using the ecosystem process model Biome-BGC (BioGeochemical Cycles) ( Running and Hunt 1993 ). Input data included remotely sensed landscape information and climate data generated with the Mountain Climate Simulator (MT-CLIM) ( Running et al. 1987 ). Estimated mean annual MBR flux into the crystalline bedrock terrain is 99,000 m3/d, or approximately 19% of annual precipitation for the 2003 water year. Controls on MBR predictions include evapotranspiration (radiation limited in wet years and moisture limited in dry years), soil properties, vegetative ecotones (significant at lower elevations), and snowmelt (dominant recharge process). The ecohydrologic model is also used to investigate how climatic and vegetative controls influence recharge dynamics within three elevation zones. The ecohydrologic model proves useful for investigating controls on recharge to mountain blocks as a function of climate and vegetation. Future efforts will need to investigate the uncertainty in the modeled water balance by incorporating an advanced understanding of mountain recharge processes, an ability to simulate those processes at varying scales, and independent approaches to calibrating MBR estimates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号